采用光滑圆柱疲劳试样,通过对500MPa级针状铁素体钢进行轴向总应变控制模式的室温低周疲劳实验,研究了实验钢的循环应力-应变行为、应变-寿命特性及循环应力响应。结果表明:当总应变幅为临界应变幅时(Δεt/2=0.35%),循环一开始就进入饱和状态,应力幅值保持不变;当总应变幅低于临界应变幅时(0.2%≤Δεt/2<0.35%),实验钢表现出循环软化特性;当总应变幅高于临界应变幅时(0.35%<Δεt/2≤0.6%),实验钢先表现出循环硬化,达到循环饱和后又表现出循环软化特性。疲劳断口的SEM分析表明,疲劳裂纹通常萌生于试样一侧的表面,具有多源性,且裂纹的扩展符合Laird的塑性钝化机制。
Abstract
Low cycle fatigue tests for 500MPa grade acicular ferrite steel were conducted with smooth rotundity-section specimens under fully reversed total strain control cycling at room temperature. Cyclic stress-strain behavior, strain-life feature and cyclic stress response were investigated through the tests. The results show that when Δεt/2 equals to 0.35%, the tested steel quickly achieves cyclic saturation, and the stress amplitudes remains almost constant. When Δεt/2 is less than 0.35%, the tested steel shows cyclic softening until failure. When Δεt/2 is higher than 0.35%, the tested steel shows cyclic hardening which is followed by cyclic softening until failure. Observations of fracture surface show that fatigue cracks initiate with multi-initiation sites from one side of the specimen surface, and fatigue crack propagation is mainly in the sharpening-blunting mechanism of Laird.
关键词
针状铁素体 /
低周疲劳 /
循环应力-应变 /
应变-寿命 /
循环应力响应
{{custom_keyword}} /
Key words
acicular ferrite /
low cycle fatigue /
cyclic stress-strain behavior /
strain-life feature /
cyclic stress response
{{custom_keyword}} /
中图分类号:
TG142.1
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 郭爱民,邹德辉.全国轧钢生产技术会议文集.北京:中国金属学会,2008.40-46.
[2] 杨忠民.建筑用钢品种开发和技术发展的趋势[J].钢铁,2009,44(11):1-6.
[3] HYO K S,SANG Y S,WOOYEOL C,et al.Effects of acicular ferrite on charpy impact properties in heat affected zones of oxide-containing API X80 linepipe steels[J].Materials Science and Engineering:A,2011,528(9):3350-3357.
[4] 赵明纯,单以银,曲锦波,等.显微组织对管线钢硫化物应力腐蚀开裂的影响[J].金属学报,2001,37(2):1087-1092.
[5] 赵明纯,单以银,杨柯.时效处理对针状铁素体管线钢力学性能和抗硫化氢行为的影响[J].金属学报,2004,40(9):948-954.
[6] 龙明建,于浩,尹雨群,等.X70针状铁素体管线钢包辛格效应研究[J].材料工程,2007,(10):31-34.
[7] 郭振,温永红,胡水平,等.F40高强船板钢组织中针状铁素体形成及细化机制研究[J].材料热处理技术,2008,37(2):38-41.
[8] 郭爱民,邹德辉,易伦雄,等.时效处理对极低碳针状铁素体钢组织和力学性能的影响[J].金属学报,2009,45(4):390-395.
[9] 罗云蓉,王清远.建筑用抗震钢高应变低周及超低周疲劳性能研究进展[J].四川建筑科学研究,2011,37(3):139-145.
[10] SAKANO M,WAHAB M A.Extremely low cycle (ELC) fatigue cracking behavior in steel bridge rigid frame piers[J].Journal of Materials Processing Technology,2001,118(1-3):36-39.
[11] LEE C H,BHADESHIA H K D H,LEE H C.Effects of plastic deformation on the formation of acicular ferrite[J].Materials Science and Engineering:A,2003,360(1-2):249-257.
[12] 尚成嘉,胡良均,杨善武,等.低碳微合金钢中针状铁素体的形成与控制[J].金属学报,2005,41(5):471-476.
[13] 胡水平,郭振.TMCP工艺下针状铁素体钢板的强韧性行为[J].塑性工程学报,2010,17(6):93-96.
[14] 舒玮,王学敏,李书瑞,等.焊接热影响区针状铁素体的形核长大及其对组织的细化作用[J].金属学报,2011,47(4):435-441.
[15] 黄志伟,袁福河,王中光,等.铸造镍基高温合金M963的高温低周疲劳行为[J].金属学报,2007,43(7):678-682.
[16] SURESH S.材料的疲劳[M].北京:国防工业出版社,1999.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家高技术研究发展计划(863计划)资助项目(2012AA03A508)
{{custom_fund}}