Current status and prospects in machine learning-driven design for refractory high-entropy alloys

Tianchuang GAO, Jianbao GAO, Qian LI, Lijun ZHANG

Journal of Materials Engineering ›› 2024, Vol. 52 ›› Issue (1) : 27-44.

PDF(7881 KB)
PDF(7881 KB)
Journal of Materials Engineering ›› 2024, Vol. 52 ›› Issue (1) : 27-44. DOI: 10.11868/j.issn.1001-4381.2023.000480

Current status and prospects in machine learning-driven design for refractory high-entropy alloys

    {{javascript:window.custom_author_en_index=0;}}
  • {{article.zuoZhe_EN}}
Author information +
History +

HeighLight

{{article.keyPoints_en}}

Abstract

{{article.zhaiyao_en}}

Key words

QR code of this article

Cite this article

Download Citations
{{article.zuoZheEn_L}}. {{article.title_en}}[J]. {{journal.qiKanMingCheng_EN}}, 2024, 52(1): 27-44 https://doi.org/10.11868/j.issn.1001-4381.2023.000480

References

References

{{article.reference}}

Funding

RIGHTS & PERMISSIONS

{{article.copyrightStatement_en}}
{{article.copyrightLicense_en}}
PDF(7881 KB)

Accesses

Citation

Detail

Sections
Recommended

/