Preparation of Thermal Insulation Block by Slip Casting and Drying at Ambient Pressure and Room Temperature

ZHANG Ming-can, ZENG Ren-jie

Journal of Materials Engineering ›› 2011, Vol. 0 ›› Issue (9) : 33-38.

PDF(612 KB)
PDF(612 KB)
Journal of Materials Engineering ›› 2011, Vol. 0 ›› Issue (9) : 33-38.

Preparation of Thermal Insulation Block by Slip Casting and Drying at Ambient Pressure and Room Temperature

  • ZHANG Ming-can, ZENG Ren-jie
Author information +
History +

Abstract

A thermal insulation block with suitable compressive strength was prepared.Silica aerogel was used as a matrix,E-glass fiber as a framework,titanium dioxide as an opacifier.Compressive strength(R),thermal conductivity(λ) and volume resistivity(ρ) at room temperature(25℃) were measured,respectively.Results show that the aqueous slurry is well dispersed when pH=8-9;the sample heated at 730℃ for 0.5h has a lower density(D) of 151kg·m-3 compared with The Standard of American Society for Testing of Materials(ASTM C533—85),and the same R value 0.41MPa as the standard.At ambient pressure,the sample has thermal conductivity(λn) of 0.036W·m-1·K-1. at room temperature and 0.061W·m-1·K-1. at 480℃,respectively.The values are lower or much lower than those of traditional thermal insulation blocks,respectively.The preparation processing of thermal insulation block was investigated systematically.The white Portland cement clinker was creactively used as a binder,and the block was made by slip casting and then being dried at ambient pressure and room temperature.Both the raw materials and the sample are non-toxic.This project has good industrialization prospects owing to its processing simple and low cost.

Key words

silica aerogel / E-glass fiber / titanium dioxide / white Portland cement clinker

Cite this article

Download Citations
ZHANG Ming-can, ZENG Ren-jie. Preparation of Thermal Insulation Block by Slip Casting and Drying at Ambient Pressure and Room Temperature[J]. Journal of Materials Engineering, 2011, 0(9): 33-38

References

[1] SOLEIMANI DORCHEH A,ABBASI M H.Silica aerogel,synthesis,properties and characterization[J].J Mater Process Techno,2008,199(1-3):10-26.
[2] 邓忠生,张会林,魏建东,等.掺杂SiO2气凝胶结构及其热学特性研究[J].航空材料学报,1999,19(4):39-43.
[3] 何飞,赫晓东,李垚.二氧化硅干凝胶的制备与结构分析[J].材料工程,2007,(12):13-16.
[4] 邹宁宇,鹿成滨,张德信.绝热材料应用技术[M].北京:中国石化出版社,2005.55-216.
[5] 杨自春,陈德平.SiO2纳米多孔绝热材料的制备与绝热性能研究[J].硅酸盐学报,2009,37(10):1740-1743.
[6] FRANK D,ZIMMERMANNA,STUHLER H G.Aerogelhaltiges verbundmaterial,verfahren zu seiner herstellung sowie seine verwendung[P].European Patent:0793626B1,1999-05-19.
[7] 杨海龙,倪文,梁涛,等.硅酸铝纤维增强纳米孔绝热材料的制备与表征[J].材料工程,2007,(7):63-66.
[8] MITCHELL M B D,JACKSON J D J.Method of manufacturing a thermal insulation body[P].European Patent:1204617B1,2003-08-27.
[9] 施维尔菲格F,兹梅尔曼A,沃尼尔J,等.含有气凝胶和粘结剂的复合材料,其制备方法及其应用[P].中国专利:1077556C,2002-01-09.
[10] 王衍飞,张长瑞,冯坚,等.SiO2气凝胶复合短切莫来石纤维多孔骨架复合材料的制备及性能[J].硅酸盐学报,2009,37(2):234-237.
[11] 高庆福,冯坚,张长瑞,等.陶瓷纤维增强氧化硅气凝胶隔热复合材料的力学性能[J].硅酸盐学报,2009,37(1):1-5.
[12] 金承黎,张洪彪,张蓉艳,等.一种常压干燥制备二氧化硅气凝胶复合材料的方法[P].中国专利:101318659A,2008-12-10.
[13] 李世普.特势陶瓷工艺学[M].武汉:武汉理工大学出版社,2003.53-162.
[14] KIM C Y,LEE J K,KIM B I.Synthesis and pore analysis of aerogel-glass fiber composites by ambient drying method[J].Colloids and Surfaces A,2008,313-314:179-182.
[15] 王非,胡子君,陈晓红.莫来石纤维增强疏水SiO2气凝胶的制备[J].宇航材料工艺,2009,39(1):35-37.
[16] 刘开平,梁庆宣.水镁石纤维增强SiO2气凝胶隔热材料的制备方法[P].中国专利:1803602A,2006-07-19.
[17] FESMIRE J E.Aerogel insulation system for space launch applications[J].Cryogenics,2006,46(2-3):111-117.
[18] 哈钦森 K W,李 S,科宾 D R,等.二氧化钛的水热制备方法[P].中国专利:101668704A,2010-03-10.
[19] GB/T 1964-1996,多孔陶瓷压缩强度试验方法[S].
[20] MA X,LEE N,OH H,et al.Surface modification and characterization of highly dispersed silica nanoparticles by a cationic surfactant[J].Colloids and Surfaces A,2010,358(1-3):172-176.
[21] POINTEAU I,REILLER P,MACE N,et al.Measurement and modeling of the surface potential evolution of hydrated cement pastes as a function of degradation[J].J Colloid Interface Sci,2006,300(1):33-34.
[22] LIAOA D L,WUB G S,LIAOA B Q.Zeta potential of shapecontrolled TiO2 nanoparticles with surfactants[J].Colloids and Surfaces A,2009,348 (1-3):270-275.
[23] PLONKA R,MADER E,GAO S L,et al.Adhesion of epoxy/glass fibre composites influenced by aging effects on sizings[J].Composites Part A,2004,35(10):1207-1216.
[24] 黄红燕,邵忠财,王国营,等.溶胶共沉淀法制备氧化锆氧化铝复合粉体[J].材料研究学报,2008,22(3):246-250.
[25] DWECK J,BUCHLER P M,COELHO A C V,et al.Hydration of a Portland cement blended with calcium carbonate[J].Thermochimica Acta,2000,346(1-2):105-113.
[26] 杨海龙,倪文,孙陈诚,等.硅酸钙复合纳米孔超级绝热板材的研制[J].宇航材料工艺,2006,(2):18-22.
[27] 隋良志,王兆国,姚春林.水泥工业耐火材料[M].北京:中国建材工业出版社,2005.81-82.
[28] 师昌绪,李恒德,周廉.材料科学工程手册[M].北京:化学工业出版社,2004.7-177.
[29] 王保国,刘淑艳,王新泉,等.传热学[M].北京:机械工业出版社,2009.18-240.
[30] 威尔特 J R,威克斯 G E,威尔逊 R E,等.动量、热量和质量传递原理[M].北京:化学工业出版社,2005.146-159.
[31] MEYAR J,SCHOLZ M,ROCHNIA M.Fumed silica[P].World Patent:2007/071526A1,2007-06-28.
[32] 曾令可,曹建新,刘世明,等.SiO2气凝胶-硅酸钙复合纳米孔超级绝热材料导热系数的测定及绝热机理分析[J].材料工程,2009,(S1):27-31.
[33] 高庆福,张长瑞,冯坚,等.氧化硅气凝胶隔热复合材料研究进展[J].材料科学与工程学报,2009,27(2):302-306.
[34] 陈德方,黄伟.电工绝缘材料手册[M].北京:水利电力出版社,1974.5-6.
[35] 胡兆斌.绝缘材料工艺学[M].北京:化学工业出版社,2005.1-2.
PDF(612 KB)

933

Accesses

0

Citation

Detail

Sections
Recommended

/