Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (6): 22-27    DOI: 10.11868/j.issn.1001-4381.2014.06.005
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
温度对TiAl合金表面Si-Al-Y共渗层组织结构的影响
李涌泉, 谢发勤, 吴向清, 姚小飞
西北工业大学 航空学院, 西安 710072
Effect of Temperature on Microstructures of Si-Al-Y Co-deposition Coatings on TiAl Alloy
LI Yong-quan, XIE Fa-qin, WU Xiang-qing, YAO Xiao-fei
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(3088 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过在1000,1050,1100℃和1150℃下Si-Al-Y扩散共渗4h的方法,在TiAl合金表面制备了Y改性Si-Al共渗层,采用SEM,EDS和XRD分析了共渗温度对共渗层组织及相组成的影响。结果表明:不同温度所制备的Si-Al-Y共渗层均具有多层复合结构,共渗层的内层都是由TiAl2和γ-TiAl相组成,互扩散区为富Al的TiAl相,随温度的升高,共渗层外层和中间层的组成相都发生改变。经1000℃/4h共渗的最外层主要为TiAl3相;温度为1050℃时,由外向内依次为TiSi2外层,(Ti,X5Si4及(Ti,X)5Si3X表示元素Nb和Cr)中间层;1100℃和1150℃/4h条件下共渗层具有相似的结构,在1100℃/4h条件下其外层由(Ti,X5Si4,(Ti,X5Si3相组成;在1150℃/4h条件下其外层由(Ti,X5Si3相组成。在四种温度条件下,1050℃/4h下制备的共渗层较厚,组织致密,适合用于Si-Al-Y共渗层的制备。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李涌泉
谢发勤
吴向清
姚小飞
关键词 TiAl合金Si-Al-Y共渗层渗层结构    
Abstract:Si-Al-Y2O3 co-deposition coatings on TiAl alloy were prepared by pack cementation processes at 1000, 1050, 1100℃ and 1150℃ for 4h, scanning electron microscope (SEM), energy dispersive spectrometry (EDS) and X-ray diffraction (XRD) were employed to investigate the surface morphologies, microstructures and phase constitutions of the coatings. The results show that the Si-Al-Y co-deposition coatings have multi layer structure. All the coatings are mainly composed of a TiAl2 and γ-TiAl inner layer, and an Al rich inter-diffusion zone; the phase constituents of outer layers and middle layers of the coatings change with increasing co-deposition temperatures. The outer layer of the coating prepared at 1000℃ for 4h is composed of TiAl3. However, the constituent phases change into TiSi2 in the out layer, and the middle layer is composed of (Ti, X)5Si4 and (Ti, X)5Si3(X represents Nb and Cr) for coating prepared at 1050℃ for 4h. The coatings prepared at 1100℃ and 1150℃ for 4 h have same layer structure, and (Ti, X)5Si4,(Ti, X)5Si3 phases are detected in the outer layer of the coating prepared at 1100℃, and (Ti, X)5Si3 phases are detected in the outer layer of the coating prepared at 1100℃. In the four kinds of (1000, 1050, 1100℃ and 1150℃) temperatures investigated, the coating prepared at 1050℃ for 4h have a denser and thicker layer, so it is selected for Si-Al-Y co-deposition.
Key wordsTiAl alloy    Si-Al-Y co-deposition coating    coating structure
收稿日期: 2013-04-11      出版日期: 2014-06-20
中图分类号:  TQ174.44  
基金资助:陕西省自然科学基础研究计划重点项目(2014JZ012)
通讯作者: 谢发勤(1962- ),男,博士,教授,主要从事材料表面腐蚀与防护研究,联系地址:西北工业大学112信箱(710072),E-mail:fqxie@nwpu.edu.cn     E-mail: fqxie@nwpu.edu.cn
作者简介: 李涌泉(1985- ),男,博士研究生,主要从事材料表面腐蚀与防护研究,联系地址:西北工业大学112信箱(710072),E-mail:8386595@163.com
引用本文:   
李涌泉, 谢发勤, 吴向清, 姚小飞. 温度对TiAl合金表面Si-Al-Y共渗层组织结构的影响[J]. 材料工程, 2014, 0(6): 22-27.
LI Yong-quan, XIE Fa-qin, WU Xiang-qing, YAO Xiao-fei. Effect of Temperature on Microstructures of Si-Al-Y Co-deposition Coatings on TiAl Alloy. Journal of Materials Engineering, 2014, 0(6): 22-27.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.06.005      或      http://jme.biam.ac.cn/CN/Y2014/V0/I6/22
[1] WU X H. Review of alloy and process development of TiAl alloys[J]. Intermetallics, 2006, 14(10-11): 1114-1122.
[2] 周媛, 熊华平, 毛唯, 等. TiAl合金与高温合金的扩散焊接头组织及性能[J]. 材料工程, 2012, (8): 88-91.ZHOU Y, XIONG H P, MAO W, et al. Microstructures and property of diffusion bonded joints between TiAl alloy and two kinds of superalloys[J]. Journal of Materials Engineering, 2012, (8): 88-91.
[3] 刘志光, 柴丽华, 陈玉勇, 等. 快速凝固TiAl化合物的研究进展[J]. 金属学报, 2008, 44(5): 569-573.LIU Z G, CHAI L H, CHEN Y Y, et al. Development of rapidly solidified titanium aluminide compounds[J]. Acta Metallurgica Sinica, 2008, 44(5): 569-573.
[4] XIANG Z D, ROSE S R, BURNELL-GRAY J S, et al.Co-deposition of aluminide and silicide coatings on γ-TiAl by pack cementation process[J].Journal of Materials Science, 2003, 38(1):19-28.
[5] NICHOLLS J R. Advances in coating design for high performance gas turbines[J]. MRS Bulletin, 2003, (9): 659-670.
[6] TIAN X D, GUO X P. Structure and oxidation behavior of Si-Y co-deposition coatings on an Nb silicide based ultrahigh temperature alloy prepared by pack cementation technique[J]. Surface and Coatings Technology, 2009, 204(3): 313-318.
[7] MATHIEU S, CHAIA N, FLEM M L, et al. Multi-layered silicides coating for vanadium alloys for generation IV reactors[J].Surface and Coatings Technology, 2012, 206(22): 4594-4600.
[8] 张平, 郭喜平. Al对Nb-Ti-Si基合金表面Si-Al-Y2O3共渗层的影响[J]. 金属学报, 2010, 46(7): 821-831.ZHANG Ping, GUO Xi-ping.Effects of Al on Si-Al-Y2O3 co-deposition coatings on Nb-Ti-Si base ultrahigh temperature alloy[J].Acta Metallurgica Sinica, 2010, 46(7):821-831.
[9] 齐涛, 郭喜平. 铌硅化物基超高温合金Si-Y2O3共渗涂层的组织及其高温抗氧化性能[J].无机材料学报, 2009, 24(6): 1219-1225.QI T, GUO X P. Microstructure and high temperature oxidation resistance of Si-Y2O3 co-deposition coatings prepared on Nb-silicide-based ultrahigh temperature alloy by pack cementation process[J]. Journal of Inorganic Materials, 2009, 24(6): 1219-1225.
[10] LIN N M, XIE F Q, ZHONG T, et al. Influence of adding various rare earths on microstructures and corrosion resistance of chromizing coatings prepared via pack cementation on P110 steel[J]. Journal of Rare Earths, 2010, 28(2): 301-304.
[11] YUAN B F, LU G W. Preparation of Al-Co codeposition coating on surface of Ni-based alloy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(1): 119-122.
[12] GUAN Z Q, PFULLMANN M, OEHRRING M, et al. Phase formation during ball milling and subsequent thermal decomposition of Ti-Al-Si powder blends[J]. Journal of Alloys and Compounds, 1997, 252: 245-251.
[13] GUI X H, WANG S Q, JIANG Q C, et al. High-temperature wear mechanism of cast hot-forging die stell 4Cr3Mo2NiV[J]. Acta Metallurgica Sinica, 2005, 41(10): 1116-1120.
[14] RAMOS A S, CARLOS A N, GILBERTO C C. On the peritectoid Ti3Si formation in Ti-Si alloys[J].Materials Characterization, 2006, 56(2): 107-111.
[15] 潘金生, 仝建民, 田民波. 材料科学基础[M]. 北京: 清华大学出版社, 1998.
[16] BEWLAY B P, JACKSON M R, LIPSITT H A. The Nb-Ti-Si ternary phase diagram: evaluation of liquid-solid phase equilibria in Nb and Ti rich alloys[J]. Journal of Phase Equilibria, 1997, 18(3): 264-278.
[1] 范爱一, 李慧中, 梁霄鹏, 陈永辉, 齐叶龙. 热变形Ti-45Al-7Nb-0.3W合金的显微组织与力学性能[J]. 材料工程, 2018, 46(7): 121-126.
[2] 王红卫, 朱春雷, 张继, 曹睿. 不同温度热暴露对铸造TiAl合金室温拉伸塑性的影响[J]. 材料工程, 2018, 46(12): 151-156.
[3] 朱春雷, 李胜, 张继. 有利于铸造TiAl合金增压器涡轮叶片可靠性的组织设计[J]. 材料工程, 2017, 45(6): 36-42.
[4] 蔡建明, 弭光宝, 高帆, 黄浩, 曹京霞, 黄旭, 曹春晓. 航空发动机用先进高温钛合金材料技术研究与发展[J]. 材料工程, 2016, 44(8): 1-10.
[5] 马李, 何录菊, 邵先亦, 王古平, 张梦贤. 电子束沉积TiAl合金的微观形貌及组织结构稳定性[J]. 材料工程, 2016, 44(1): 89-95.
[6] 王艳晶, 柳乐, 宋玫锦. Y微合金化高铌TiAl基合金微观组织研究[J]. 材料工程, 2015, 43(1): 66-71.
[7] 焦泽辉, 宋西平, 张敏, 于慧臣. 全片层与双态组织高铌TiAl合金高温原位拉伸研究[J]. 材料工程, 2013, 0(9): 79-83,90.
[8] 司家勇, 李胜, 张继. 大变形量近等温锻造开坯对TiAl合金组织与性能的影响[J]. 材料工程, 2013, 0(6): 40-44.
[9] 周媛, 熊华平, 毛唯, 陈波, 叶雷. TiAl合金与高温合金的扩散焊接头组织及性能[J]. 材料工程, 2012, 0(8): 88-91,100.
[10] 付明杰, 静永娟, 张继. 挤压开坯γ-TiAl合金的热变形行为研究[J]. 材料工程, 2011, 0(5): 62-65.
[11] 杨非, 孔凡涛, 陈玉勇, 肖树龙. TiAl合金板材的制备及研究现状[J]. 材料工程, 2010, 0(5): 96-100.
[12] 陈玉勇, 杨非, 孔凡涛, 肖树龙. 烧结温度对TiAl合金块体材料组织和性能的影响[J]. 材料工程, 2010, 0(4): 1-4.
[13] 王东生, 田宗军, 陈志勇, 沈理达, 刘志东, 黄因慧. TiAl合金表面激光重熔等离子喷涂MCrAlY涂层研究[J]. 材料工程, 2009, 0(7): 72-78.
[14] 司家勇, 韩鹏彪, 高帆, 张继. TiAl合金高温锻造开坯过程数值模拟研究[J]. 材料工程, 2009, 0(3): 22-26,31.
[15] 许正芳, 徐向俊, 林均品, 张勇, 王艳丽, 林志, 陈国良. 热处理消除大尺寸铸态高Nb-TiAl基合金组织中的β相偏析[J]. 材料工程, 2007, 0(9): 42-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn