Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (6): 28-34    DOI: 10.11868/j.issn.1001-4381.2014.06.006
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
Q235低碳钢等离子体电解硼碳共渗处理及性能分析
王彬1,2, 薛文斌1,2, 金小越1,2, 吴杰1,2, 华铭1,2, 吴正龙3
1. 北京师范大学 核科学与技术学院 射线束技术与材料改性 教育部重点实验室, 北京 100875;
2. 北京市辐射中心, 北京 100875;
3. 北京师范大学 分析测试中心, 北京 100875
Plasma Electrolytic Borocarburizing Treatment on Q235 Low-carbon Steel and Its Properties
WANG Bin1,2, XUE Wen-bin1,2, JIN Xiao-yue1,2, WU Jie1,2, HUA Ming1,2, WU Zheng-long3
1. Key Laboratory for Beam Technology and Materials Modification (Ministry of Education), College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China;
2. Beijing Radiation Center, Beijing 100875, China;
3. Analytical and Testing Center, Beijing Normal University, Beijing 100875, China
全文: PDF(3538 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用液相等离子体电解渗方法对Q235低碳钢进行硼碳共渗(PEB/C)处理,研究了Q235低碳钢表面硼碳共渗层的形貌、结构和显微硬度。评估了PEB/C处理前后Q235钢的电化学腐蚀性能,以及以GCr15钢球作为摩擦副在不同载荷条件下PEB/C渗层的摩擦磨损特性。结果表明,经过PEB/C处理后(330V/30min),形成厚度约为20μm并主要由Fe2B相组成的渗硼层。PEB/C处理轻微提高了Q235钢的耐腐蚀性能,但明显降低了Q235低碳钢与GCr15钢球对磨的摩擦因数和磨损率。当载荷为5N时,PEB/C样品的摩擦因数和磨损率分别是Q235钢基体的1/4和1/59。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王彬
薛文斌
金小越
吴杰
华铭
吴正龙
关键词 等离子体电解渗硼碳共渗腐蚀摩擦磨损    
Abstract:Q235 low carbon steel was treated by plasma electrolytic borocarburizing (PEB/C) with the method of plasma electrolytic saturation.The morphology, structure and microhardness of borocarburizing layer on Q235 low-carbon steel were investigated. The electrochemical corrosion properties of Q235 steel before and after the PEB/C treatment were evaluated, and the tribological behavior of plasma electrolytic borocarburized Q235 low-carbon steel against GCr15 bear steel ball under different load was analyzed. The results show that the Q235 low-carbon steel forms a boride layer about 20μm thick after 330V and 30min PEB/C treatment. The boride layer mainly consists of Fe2B phase. The PEB/C treatment slightly improves the corrosion resistance of Q235 steel and significantly reduces the friction coefficient and wear rate of the Q235 steel against GCr15 steel ball. The friction coefficient and wear rate of PEB/C sample with a 5 N load are only 1/4 and 1/59 of that of the bare Q235 steel, respectively.
Key wordsplasma electrolytic saturation    borocarburizing    corrosion    friction and wear
收稿日期: 2013-03-19      出版日期: 2014-06-20
中图分类号:  TG156.8  
基金资助:国家自然科学基金项目(51071031);北京市自然科学基金项目(2122017);高等学校博士学科点专项科研基金(20120003110010);中央高校基本科研业务费专项资金项目(211105562GK)
通讯作者: 薛文斌(1968- ),男,教授,博士,主要从事材料表面改性研究,联系地址:北京师范大学核科学与技术学院(100875),E-mail:xuewb@bnu.edu.cn     E-mail: xuewb@bnu.edu.cn
作者简介: 王彬(1987- ),男,博士生,主要从事材料表面改性研究,联系地址:北京师范大学核科学与技术学院(100875),E-mail:wangbin337140025@163.com
引用本文:   
王彬, 薛文斌, 金小越, 吴杰, 华铭, 吴正龙. Q235低碳钢等离子体电解硼碳共渗处理及性能分析[J]. 材料工程, 2014, 0(6): 28-34.
WANG Bin, XUE Wen-bin, JIN Xiao-yue, WU Jie, HUA Ming, WU Zheng-long. Plasma Electrolytic Borocarburizing Treatment on Q235 Low-carbon Steel and Its Properties. Journal of Materials Engineering, 2014, 0(6): 28-34.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.06.006      或      http://jme.biam.ac.cn/CN/Y2014/V0/I6/28
[1] SECLCUK B, IPEK R, KARAMIS M B, et al. An investigation on surface properties of treated low carbon and alloyed steels (boriding and carburizing)[J]. Journal of Materials Processing Technology, 2000, 103(2): 310-317.
[2] 卢金斌, 马丽. 不锈钢等离子渗碳工艺及渗层组织和性能的研究[J]. 材料保护, 2007, 40 (2): 35-37. LU J B, MA L. Study of plasma carburizing process for stainless steel and micristructure and mechanical properties of the carburizing layer[J]. Materials Protection, 2007, 40(2):35-37.
[3] MISHRA S C, MOHANTY B C. Arc plasma nitriding of low carbon steel[J]. Surface and Coatings Technology, 2001, 145(1-3): 24-30.
[4] SAHIN S, MERIC C. Investigation of the effect of boronizing on cast irons[J]. Materials Research Bulletin, 2002, 37(5): 971-979.
[5] 衣晓红, 李凤华, 樊占国. Q235钢固体粉末渗硼及渗层生长动力学行为[J]. 材料保护, 2009, 42(4):13-16. YI X H, LI F H, FAN Z G. Technology for solid-state pack boronizing of Q235 steel and kinetic study of boron diffusion in steel[J]. Materials Protection, 2009, 42(4): 13-16.
[6] KUPER A, QIAO X, STOCK H R, et al. A novel approach to gas boronizing[J]. Surface and Coatings Technology, 2000, 130(1):87-94.
[7] KARTAL G, ERYILMAZ O L, KRUMDICK G, et al. Kinetics of electrochemical boriding of low carbon steel[J]. Applied Surface Science, 2011, 257(15): 6928-6934.
[8] YOON J H, JEE Y K, LEE S Y. Plasma paste boronizing treatment of the stainless steel AISI 304[J]. Surface and Coatings Technology, 1999, 112(1-3):71-75.
[9] TABUR M, IZCILER M, GUL F, et al. Abrasive wear behavior of boronized AISI 8620 steel[J]. Wear, 2009, 266(11-12): 1106-1112.
[10] 李杰, 沈德久, 王玉林, 等. 液相等离子体电解渗透技术[J]. 金属热处理, 2005, 30(9): 64-67. LI J, SHEN D J, WANG Y L, et al. Plasma electrolytic saturation technique in solution[J]. Heat Treatment of Metals, 2005, 30(9): 64-67.
[11] CAVUSLU F, USTA M. Kinetics and mechanical study of plasma electrolytic carburizing for pure iron[J]. Applied Surface Science, 2011, 257(9): 4014-4020.
[12] NIE X, WANG L, YAO Z C, et al. Sliding wear behaviour of electrolytic plasma nitrided cast iron and steel[J]. Surface and Coatings Technology, 2005, 200(5-6): 1745-1750.
[13] SHEN D J, WANG Y L, NASH P, et al. A novel method of surface modification for steel by plasma electrolysis carbonitriding[J]. Materials Science and Engineering:A, 2007, 458(1-2): 240-243.
[14] TSOTSOS C, YEROKHIN A L, WILSON A D, et al. Tribological evaluation of AISI 304 stainless steel duplex treated by plasma electrolytic nitrocarburising and diamond-like carbon coating[J]. Wear, 2002, 253(9-10): 986-993.
[15] 薛文斌, 金乾, 刘润, 等. 甘油浓度对不锈钢表面液相等离子体电解渗透过程的影响[J]. 中国有色金属学报, 2013, 23(3): 882-887. XUE W B, JIN Q, LIU R, et al. Influence of glycerin concentration on plasma electrolytic saturation process of stainless steel surface[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(3): 882-887.
[16] 薛文斌, 金乾, 朱庆振, 等.不锈钢在甘油体系中等离子体电解渗碳层特性研究[J]. 航空材料学报, 2010, 30(4): 38-42. XUE W B, JIN Q, ZHU Q Z, et al. Characterization of plasma electrolytic carburized stainless steel in glycerin aqueous solution[J].Journal of Aeronautical Materials, 2010, 30(4): 38-42.
[17] BEJAR M A, HEBRIQUEZ R. Surface hardening of steel by plasma-electrolysis boronizing[J]. Materials and Design, 2009, 30(5): 1726-1728.
[18] TAHERI P, DEHGANIAN C, ALIOFKHAZRAEI M, et al. Nanocrystalline structure produced by complex surface treatments: plasma electrolytic nitrocarburizing, boronitriding, borocarburizing, and borocarbonitriding[J]. Plasma Processes and Polymers, 2007, 4(Suppl 1):721-727.
[19] KULKA M, PERTERK A, MAKUCH N. The importance of carbon concentration-depth profile beneath iron borides for low-cycle fatigue strength[J]. Materials Science and Engineering:A, 2011, 528(29-30): 8641-8650.
[20] 曹楚南, 张鉴清. 电化学阻抗谱导论[M]. 北京: 科学出版社, 2002.
[21] LIU F G, DU M, ZHANG J, et al.Electrochemical behavior of Q235 steel in saltwater saturated with carbon dioxide based on new imidazoline derivative inhibitor[J]. Corrosion Science, 2009, 51(1):102-109.
[22] JIANG J, WANG Y, ZHONG Q D, et al. Preparation of Fe2B boride coating on low-carbon steel surfaces and its evaluation of hardness and corrosion resistance[J]. Surface and Coatings Technology, 2011, 206(2-3): 473-478.
[1] 胡洁, 董中奇, 沈英明, 王杨, 杨俊雅. Mo元素对LaFe11.5Si1.5磁制冷材料耐腐蚀性能及磁性能的影响[J]. 材料工程, 2020, 48(8): 119-125.
[2] 王霞, 王辉, 侯丽, 蒋欢, 周雯洁. 超疏水防腐蚀涂层的研究进展[J]. 材料工程, 2020, 48(6): 73-81.
[3] 徐小宁, 何保军, 张国鹏, 刘忠侠, 张国涛. KH560处理对Al-Al2O3-硅烷复合涂层耐蚀性的影响[J]. 材料工程, 2020, 48(5): 151-159.
[4] 黄希, 李小燕, 方晓东, 熊子成, 彭奕超, 韦丽华. 容错事故燃料包壳用FeCrAl合金的研究进展[J]. 材料工程, 2020, 48(3): 19-33.
[5] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[6] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[7] 元云岗, 康嘉杰, 岳文, 付志强, 朱丽娜, 佘丁顺, 王成彪. 不同温度下等离子渗氮后TC4钛合金的摩擦磨损性能[J]. 材料工程, 2020, 48(2): 156-162.
[8] 张军, 刘崇宇. 粉末冶金法制备CNT和SiC混杂增强铝基复合材料的摩擦磨损性能[J]. 材料工程, 2020, 48(11): 131-139.
[9] 刘玉项, 朱胜, 韩冰源. 金属镁电化学腐蚀阳极析氢行为研究进展[J]. 材料工程, 2020, 48(10): 17-27.
[10] 万天, 宋述鹏, 王今朝, 周和荣, 毛雨旭, 熊少聪, 李梦君. 生物医用镁合金腐蚀行为的研究进展[J]. 材料工程, 2020, 48(1): 19-26.
[11] 董建民, 李嘉荣, 韩梅. 检验腐蚀对镍基单晶高温合金高周疲劳性能的影响[J]. 材料工程, 2020, 48(1): 77-83.
[12] 林梦晓, 张杰, 蒋全通, 李佳润, 路东柱, 侯保荣, 孙园园. 海水中小球藻对Mg-3Y-1.5Nd镁合金腐蚀行为的影响[J]. 材料工程, 2020, 48(1): 98-107.
[13] 周莉, 柳汀, 郑典亮, 许勇刚. 选择表面工艺改性的CIPs涂层及其氧化物的吸波性能[J]. 材料工程, 2019, 47(9): 132-138.
[14] 马明星, 王志新, 梁存, 周家臣, 张德良, 朱达川. CeO2掺杂对AlCoCrCuFe高熵合金的组织结构与摩擦磨损性能的影响[J]. 材料工程, 2019, 47(7): 106-111.
[15] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn