Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (6): 89-96    DOI: 10.11868/j.issn.1001-4381.2014.06.017
  综述 本期目录 | 过刊浏览 | 高级检索 |
石墨烯的电子结构及其应用进展
梁彤祥, 刘娟, 王晨
清华大学 核能与新能源技术研究院 精细陶瓷北京市重点实验室, 北京 100084
Electronic Structure of Graphene and Its Application Advances
LIANG Tong-xiang, LIU Juan, WANG Chen
Beijing Key Lab of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
全文: PDF(2992 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 本文分析了石墨烯的晶体结构、电子结构以及其独特的量子霍尔效应,评价了石墨烯的制备方法,分析了石墨稀应用研究进展。阐述了目前石墨稀材料研究的主要问题,并预测了其发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁彤祥
刘娟
王晨
关键词 石墨烯炭素材料量子霍尔效应    
Abstract:Crystal-structure and electronic structure of graphene and quantum Hall effect is analyzed in this paper, the preparation of graphene is evaluated, and its application as well as the research advances are analyzed. The main problem existed in the study of graphene is explained, and the development trend of graphene is prospected.
Key wordsgraphene    carbon material    quantum Hall effect
收稿日期: 2014-01-16      出版日期: 2014-06-20
中图分类号:  TQ031.2  
基金资助:国家自然科学基金资助项目(21271114)
作者简介: 梁彤祥(1966- ),男,教授,主要从事无机非金属材料、核材料等研究工作,联系地址:清华大学核能与新能源技术研究院能科楼A座311(100084),E-mail:txliang@tsinghua.edu.cn
引用本文:   
梁彤祥, 刘娟, 王晨. 石墨烯的电子结构及其应用进展[J]. 材料工程, 2014, 0(6): 89-96.
LIANG Tong-xiang, LIU Juan, WANG Chen. Electronic Structure of Graphene and Its Application Advances. Journal of Materials Engineering, 2014, 0(6): 89-96.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.06.017      或      http://jme.biam.ac.cn/CN/Y2014/V0/I6/89
[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon film[J]. Science, 2004, 306(5696): 666-669.
[2] SUN L F, FANG C, LIANG T X. Novel transport properties in monolayer graphene with velocity modulation[J]. Chinese Physics Letters, 2013, 30(4):047201-047204.
[3] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, (6):183-191.
[4] CHEN J, JANG C, XIAO S, et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2[J]. Nature Nanotechnology, 2008, (3):206-209.
[5] GRIGERENKO A N, POLINI M, NOVOSELOV K S. Graphene plasmonics[J]. Nature Photonics, 2012, (6):749-758.
[6] KLIMOV N N, JUNG S, ZHU S, et al. Electromechanical properties of graphene drumheads[J]. Science, 2012, 336(6088):1557-1561.
[7] NETO A. Another spin on graphene[J]. Science, 2011, 332(6027):315-316.
[8] OHTA T, BOSTWICK A, SEYLLER T, et al. Controlling the electronic structure of bilayer graphene[J]. Science, 2006, 313(5789):951-954.
[9] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of mass less Dirac fermions in graphene[J]. Nature, 2005, (438):197-200.
[10] XU Y, BAI H, LU G, et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets[J]. Journal of American Chemical Society, 2008, 130(18): 5856-5857.
[11] BERGER C, SONG Z M, LI X B, et al. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science, 2006, 312(5777):1191-1196.
[12] RAO C, SOOD A, SUBRAHMANYAM K S, et al. Graphene: the new two-dimensional nanomaterial[J]. Angewandte Chemie International Edition, 2009, 48(42):7752-7777.
[13] KATSNELSON M I, NOVOSELOV K S, GEIM A K. Chiral tunneling and the klein paradox in graphene[J]. Nature Physics, 2006, (2):620-625.
[14] KATSNELSON M I. Graphene: carbon in two dimensions[J]. Materials Today, 2007, 10 (1-2):20-27.
[15] GOSSELIN P. Berry curvature in graphene: a new approach[J]. European Physics Journal C, 2009, (59):883-889.
[16] ZHANG Y, TAN Y, STORMER H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, (438):201-204.
[17] JIANG Z, ZHANG Y, TAN Y W, et al. Quantum Hall effect in graphene[J]. Solid State Communications, 2007, 143(1-2):14-19.
[18] NOVOSELOV K S, JIANG Z, ZHANG Y, et al. Room-temperature quantum hall effect in graphene[J]. Science, 2007, 315(5817):1379.
[19] WANG Z, TOMOVIC Z, KASTLER M, et al. Graphitic molecules with partial zigzag periphery[J]. Journal of American Chemical Society, 2004, 126(25):7794-7795.
[20] KASTLER M, SCHMIDT J, PISULA W, et al. From armchair to zigzag peripheries in nano graphenes[J]. Journal of American Chemical Society, 2006, 128(29):9526-9534.
[21] LIANG X G, FU Z L, CHOU S Y. Graphene transistors fabricated via transfer-printing in device active-areas on large wafer[J]. Nano Letters, 2007, 7(12):3840-3844.
[22] MEYER J C, GEIM A K, KATSNELSON M I, et al. On the roughness of single-and bi-layer graphene membranes[J]. Solid State Communications, 2007, 143(1-2):101-109.
[23] HEER W A, BERGER C, WU X S, et al. Epitaxial graphene[J]. Solid State Communications, 2007, 143(1-2):92-100.
[24] NAGASHIMA A, NUKA K, ITOH H, et al. Electronic states of monolayer graphite formed on TiC(111) surface[J]. Surface Science, 1993, 291(1-2):93-98.
[25] DATO A, RADMILOVIC V, LEE Z H, et al. Substrate-free gas-phase synthesis of graphene sheets[J]. Nano Letters, 2008, 8(7):2012-2016.
[26] 徐秀娟, 秦金贵, 李振. 石墨烯研究进展[J]. 化学进展, 2009, 21(12):2559-2567. XU X J, QIN J G, LI Z. Research advances of graphene[J]. Progress in Chemistry, 2009, 21(12):2559-2567.
[27] Jr HUMMERS W S, OFFEMAN R E. Preparation of graphite oxide[J]. Journal of American Chemical Society, 1958, 80(6):1339.
[28] 任小孟, 王源升, 何特. Hummers法合成石墨烯的关键工艺及反应机理[J]. 材料工程, 2013, (1):1-5. REN X M, WANG Y S, HE T. Key processes and mechanism for preparing graphene by Hummers method[J]. Materials Engineering, 2013, (1):1-5.
[29] STANKOVICH S, PINER R D, CHEN X Q et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate)[J].Journal of Materials Chemistry, 2006, (16):155-158.
[30] STANKOVICH S, PINER R D, NGUYEN S B, et al. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets[J]. Carbon, 2006, 44(15):3342-3347.
[31] STANKOVICH S, KIKIN D A, DOMMETT G H B, et al. Graphene-based composite materials[J]. Nature, 2006, (442):282-286.
[32] NIYOGI S, BEKYAROVA E, ITKIS M E, et al. Solution properties of graphite and graphene[J]. Journal of American Chemical Society, 2006, 128(24):7720-7721.
[33] LOMEDA J R, DOYLE C D, KOSYNKIN D V, et al. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets[J]. Journal of American Chemical Society, 2008, 130 (48):16201-16206.
[34] WORSLEY K A, RAMESH P, MANDAL S K, et al. Soluble graphene derived from graphite fluoride[J]. Chemical Physics Letters, 2007, 445(1-3):51-56.
[35] HAO R, QIAN W, ZHANG L H, et al. Aqueous dispersions of TCNQ-anion-stabilized graphene sheets[J]. Chemical Communications, 2008, (48):6576-6578.
[36] SI Y, SAMULSKI E. Exfoliated graphene separated by platinum nanoparticles[J]. Chemistry Materials, 2008, 20(21):6792-6797.
[37] PARK S, LEE K, BOZOKLU G, et al. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking[J]. ACS Nano, 2008, 2(3):572-578.
[38] LIN Y, JENKINS K A, AVOURIS P, et al. Operation of graphene transistors at gigahertz frequencies[J]. Nano Letters, 2009, 9(1):422-426.
[39] ANG P K, CHEN W, WEE A, et al. Solution-gated epitaxial graphene as pH sensor[J]. Journal of American Chemical Society, 2008, 130(44):14392-14393.
[40] CAPONE S. Solid state gas sensors:state of the art and future activities[J]. Advanced Materials, 2003, 5(5):1335-1348.
[41] KONG J, FRANKLIN N R, ZHOU C, et al. Nanotube molecular wires as chemical sensors[J]. Science, 2000, 287(5453): 622-625.
[42] COLLINS P G, BRADLEY K, LSHIGAMI M, et al. Extreme oxygen sensitivity of electronic properties of carbon nanotubes[J]. Science, 2000, 287(5459): 1801-1804.
[43] SCHEDIN F, GEIM A, MOROZOV S, et al. Detection of individual gas molecules adsorbed on graphene[J]. Nature Materials, 2007, (6):652-655.
[44] SUNDARAM R S, NAVARRO C G, BALASUBRAMANIAN K, et al. Electrochemical modification of graphene[J]. Advanced Materials, 2008, 20(16):3050-3053.
[45] ROBINSON J T, PERKINS F K, SNOW E S, et al. Reduced graphene oxide molecular sensors[J]. Nano Letters, 2008, 8(10):3137-3140.
[46] HUITEMA H E A, CELINCK G H, Van der PUTTEN J B P H, et al. Plastic transistors in active-matrix displays[J]. Nature, 2001, 414:599.
[47] WU Y, LI Y, GARDNER S, GARDNER S, et al. Indolo carbazole-based thin-film transistors with high mobility and stability[J]. Journal of American Chemical Society, 2005, 127(2):614-618.
[48] MURPHY A R, FRECHET M J. Organic semiconducting oligomers for use in thin film transistors[J]. Chemical Reviews, 2007, 107(4):1066-1096.
[49] DI C, WEI D, YU G, et al. Patterned graphene as sourse/drain electrodes for bottom-contact organic field-effect transistors[J]. Advanced Materials, 2008, 20(17):3289-3293.
[50] WANG X, ZHI L, MULLEN K. Transparent conductive graphene electrodes for dye-sensitized solar cells[J]. Nano Letters, 2008, 8(1):323-327.
[51] WU J, BECERRIL H, BAO Z, et al. Organic solar cells with solution-processed graphene transparent electrodes[J]. Applied Physics Letters, 2008, (92):263302-263303.
[52] LI D, KANER R B. Graphene-based materials[J]. Science, 2008, 320(5880):1170-1171.
[53] LI D, MULLER M, GILJE S et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotechnology, 2008, (3):101-105.
[54] YANG Y C, RIGDON W, HUANG X Y, et al. Enhancing graphene reinforcing potential in composites by hydrogen passivation induced dispersion[J]. Scientific Reports, 2013, (3):2086.
[55] SUN Y, WU Q, SHI G. Graphene based new energy materials[J]. Energy Environmental Science, 2011, (4):1113-1132.
[56] GHOSH A. SUBRAHMANYAM K S, KRISHNA K S, et al, Uptake of H2 and CO2 by graphene[J]. Journal of Physical Chemistry C, 2008, 112(40):15704-15707.
[57] SINT K, WANG B, KRAL P. Selective ion passage through functionalized graphene nanopores[J]. Journal of American Chemical Society, 2008, 130(49):16448-16449.
[1] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[2] 高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
[3] 杨程, 时双强, 郝思嘉, 褚海荣, 戴圣龙. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020, 48(7): 1-13.
[4] 钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7): 14-23.
[5] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[6] 李娜, 张儒静, 甄真, 许振华, 何利民. 等离子体增强化学气相沉积可控制备石墨烯研究进展[J]. 材料工程, 2020, 48(7): 36-44.
[7] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[8] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
[9] 白明洁, 刘金龙, 齐志娜, 何江, 魏俊俊, 苗建印, 李成明. 石墨烯纳米流体研究进展[J]. 材料工程, 2020, 48(4): 46-59.
[10] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[11] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[12] 南文争, 燕绍九, 彭思侃, 王晨, 王继贤. 石墨烯的液相剥离制备及在磷酸铁锂正极中的应用[J]. 材料工程, 2020, 48(11): 108-115.
[13] 陈宇, 张代军, 李军, 温嘉轩, 陈祥宝. 石墨烯改性碳纤维树脂基复合材料的制备和性能评价[J]. 材料工程, 2020, 48(10): 82-87.
[14] 宇文超, 刘秉国, 张立波, 郭胜惠, 彭金辉. 低温一步制备氧化石墨烯及微波还原研究[J]. 材料工程, 2019, 47(9): 21-28.
[15] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn