Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (7): 67-72    DOI: 10.11868/j.issn.1001-4381.2014.07.013
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
等离子热障涂层构件高温热疲劳寿命预测研究
齐红宇1,2, 马立强1, 李少林1, 杨晓光1,2, 王亚梅1, 魏洪亮
1. 北京航空航天大学 能源与动力工程学院, 北京 100191;
2. 先进航空发动机协同创新中心, 北京, 100191
High Temperature Thermal Fatigue Life Prediction of Plasma Sprayed Thermal Barrier Coatings Structure
QI Hong-yu1,2, MA Li-qiang1, LI Shao-lin1, YANG Xiao-guang1,2, WANG Ya-mei1, WEI Hong-liang1
1. School of Energy and Power Engineering, Beihang University, Beijing 100191, China;
2. Collaborative Innovation Center of Advanced Aero-engine, Beijing 100191, China
全文: PDF(1874 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 针对等离子热障涂层构件的变形特点,在总结热障涂层热疲劳寿命相关文献研究成果的基础上,合理设计了平板和圆管试样的高温氧化与热疲劳试验。根据菲克定律,结合高温氧化实验数据建立粘接层Al贫化的数学模型。把粘接层Al浓度作为耦合氧化损伤的控制参量引入寿命预测模型,建立氧化损伤和热疲劳损伤耦合作用的等离子热障涂层寿命预测模型。寿命预测结果表明该寿命预测模型合理、方法可行。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
齐红宇
马立强
李少林
杨晓光
王亚梅
魏洪亮
关键词 等离子热障涂层高温氧化热疲劳寿命预测    
Abstract:According to the deformation characteristics of plasma sprayed ceramic thermal barrier coatings (TBC) structure and the summary of research for thermal fatigue life of TBC structure, high temperature oxidation test and thermal fatigue test of thermal barrier coating structures were designed and conducted. Based on the high temperature oxidation data and Fick's second law of diffusion, Al depletion model of bond coating was established. Then, Al concentration of bond coating was introduced to existing life prediction model. Combined with the thermal fatigue test data, life prediction model was established, which can characterize the coupling effect of oxidation damage and thermal fatigue damage. The life prediction results are reasonable and the method is feasible.
Key wordsplasma sprayed thermal barrier coating    high temperature oxidation    thermal fatigue    life prediction
收稿日期: 2013-01-15      出版日期: 2014-07-20
中图分类号:  V231.91  
基金资助:北京市科学技术委员会资助项目(D131100003113003);国家高科技发展计划863资助项目(2012AA052102);国际科技合作资助项目(2013DFA61590)
通讯作者: 齐红宇(1969-)男,副教授,硕导,博士,主要从事航空发动机结构及强度研究,联系地址:北京市海淀区学院路37号北京航空航天大学北配楼401室(100191),E-mail:qhy@buaa.edu.cn     E-mail: qhy@buaa.edu.cn
引用本文:   
齐红宇, 马立强, 李少林, 杨晓光, 王亚梅, 魏洪亮. 等离子热障涂层构件高温热疲劳寿命预测研究[J]. 材料工程, 2014, 0(7): 67-72.
QI Hong-yu, MA Li-qiang, LI Shao-lin, YANG Xiao-guang, WANG Ya-mei, WEI Hong-liang. High Temperature Thermal Fatigue Life Prediction of Plasma Sprayed Thermal Barrier Coatings Structure. Journal of Materials Engineering, 2014, 0(7): 67-72.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.07.013      或      http://jme.biam.ac.cn/CN/Y2014/V0/I7/67
[1] MILLER R A. Current status of thermal barrier coatings-an overview[J]. Surface and Coatings Technology, 1987, 30(1): 1-11.
[2] 韩萌, 黄继华, 陈树海. 热障涂层应力与失效机理若干关键问题的研究进展与评述[J]. 航空材料学报, 2013, 33(5): 83-98.HAN M, HUANG J H, CHEN S H. Research progress and review on key problems of stress and failure mechanism of thermal barrier coating[J]. Journal of Aeronautical Materials, 2013, 33(5): 83-98.
[3] SHEFFLER K D, GUPTA D K. Current status and future trends in turbine application of thermal barrier coatings[J]. Journal of Engineering for Gas Turbines and Power, 1988, 110(4): 605-609.
[4] 钟锦岩, 牟仁德, 何英, 等. NiCoCrAlYHf 涂层与一种Ni基单晶高温合金循环氧化行为研究[J]. 材料工程, 2013,(8): 28-35.ZHONG J Y, MU R D, HE Y, et al. Thermal cyclic oxidation behavior between NiCoCrAlYHf bond coat and a kind of Ni-based single crystal superalloy[J]. Journal of Materials Engineering, 2013,(8): 28-35.
[5] SCHLICHTING K W, PADTURE N P, JORDAN E H, et al. Failure modes in plasma-sprayed thermal barrier coatings[J]. Materials Science and Engineering: A, 2003, 342(1): 120-130.
[6] BUSSO E P, LIN J, SAKURAI S, et al. A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system Part I: model formulation[J]. Acta Materialia, 2001, 49(9): 1515-1528.
[7] BUSSO E P, LIN J, SAKURAI S, et al. A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system Part II: life prediction model[J]. Acta Materialia, 2001, 49(9): 1529-1536.
[8] CHEN W R, WU X, DUDZINSKI D. Influence of thermal cycle frequency on the TGO growth and cracking behaviors of an APS-TBC[J]. Journal of Thermal Spray Technology, 2012, 21(6): 1294-1299.
[9] KERREBROCK J L. Aircraft Engines and Gas Turbines[M]. Cambridge, MA: MIT Press, 1992.
[10] HE M Y, MUMM D R, EVANS A G. Criteria for the delamination of thermal barrier coatings: with application to thermal gradients[J]. Surface and Coatings Technology, 2004, 185(2): 184-193.
[11] DEMASI J T, SHEFFLER K D, ORITIZ M. Thermal Barrier Coating Life Prediction Model Development. NASA-CR-182230, 1989.
[12] EVANS A G, MUMM D R, HUTCHINSON J W, et al. Mechanisms controlling the durability of thermal barrier coatings[J]. Progress in Materials Science, 2001, 46(5): 505-553.
[13] EVANS A G, HE M Y, HUTCHINSON J W. Mechanics-based scaling laws for the durability of thermal barrier coatings[J]. Progress in Materials Science, 2001, 46(3): 249-271.
[14] HE M Y, EVANS A G, HUTCHINSON J W. The ratcheting of compressed thermally grown thin films on ductile substrates[J]. Acta Materialia, 2000, 48(10): 2593-2601.
[15] QIAN G. Fracture Analysis and Microstructural Modeling of Thermal Spray Coatings. New York: School of Mechanical Engineering, State University of New York, USA, 1999.
[16] BRODIN H, ESKNER M. The influence of oxidation on mechanical and fracture behaviour of an air plasma-sprayed NiCoCrAlY bondcoat[J]. Surface and Coatings Technology, 2004, 187(1): 113-121.
[17] CHEN W R, WU X, MARPLE B R, et al. Oxidation and crack nucleation/growth in an air-plasma-sprayed thermal barrier coating with NiCrAlY bond coat[J]. Surface and Coatings Technology, 2005, 197(1): 109-115.
[18] EVANS H E, TAYLOR M P. Diffusion cells and chemical failure of MCrAlY bond coats in thermal-barrier coating systems[J]. Oxidation of Metals, 2001, 55(1-2): 17-34.
[19] 王亚梅. 热障涂层破坏机理及寿命分析方法的研究. 北京:北京航空航天大学, 2009.
[20] CHE C, WU G Q, QI H Y, et al. Depletion model of aluminum in bond coat for plasma-sprayed thermal barrier coatings [J]. Advanced Materials Research, 2009,75: 31-35.
[1] 毛杰, 马景涛, 邓畅光, 邓春明, 宋进兵, 刘敏, 宋鹏. 表面粗糙度对PS-PVD YSZ陶瓷层性能的影响[J]. 材料工程, 2020, 48(5): 144-150.
[2] 周航, 张峥. AlSi10Mg(Cu)铸铝合金的热疲劳裂纹萌生及早期扩展行为[J]. 材料工程, 2019, 47(3): 131-138.
[3] 山泉, 张亚峰, 张哲轩, 李祖来, 蒋业华, 王鹏飞. 钨含量对WCP/钢基表层复合材料压缩性能及热疲劳行为的影响[J]. 材料工程, 2019, 47(2): 115-121.
[4] 赵玲, 刘光磊, 张思源, 李茂军, 刘简宁, 李明辉. 固溶时效深冷复合处理对ZCuAl10Fe3Mn2合金微观组织和热疲劳性能的影响[J]. 材料工程, 2019, 47(12): 63-70.
[5] 李会芳, 赵杰, 程从前, 闵小华, 曹铁山, 许军. 基于Zc参数的HP耐热合金高温蠕变及持久寿命的预测方法[J]. 材料工程, 2018, 46(3): 112-116.
[6] 陈亚军, 刘辰辰, 褚玉龙, 宋肖肖. 7075-T651铝合金薄壁管件多轴低周疲劳行为及寿命预测[J]. 材料工程, 2018, 46(10): 60-69.
[7] 黄祖江, 蒋智秋, 董婉冰, 童庆, 李伟洲. 微弧氧化及包埋渗铝法制备的复合涂层高温抗蚀性能[J]. 材料工程, 2018, 46(1): 44-52.
[8] 杨珍, 鲁金涛, 张夏妮, 赵新宝, 袁勇, 党莹樱, 尹宏飞, 谷月峰. 水蒸气温度对700℃先进超超临界锅炉候选合金GH2984氧化行为的影响[J]. 材料工程, 2018, 46(1): 74-82.
[9] 许军, 李会芳, 程从前, 曹铁山, 赵杰. 基于应力松弛实验对服役25Cr35Ni型耐热钢的高温性能评估[J]. 材料工程, 2017, 45(8): 96-101.
[10] 戴景杰, 张丰云, 王阿敏, 陈传忠, 翁飞. Nb掺杂对Ti-Al合金化层抗高温氧化性能的影响[J]. 材料工程, 2017, 45(2): 24-31.
[11] 张林伟, 王鲁, 王全胜, 陆磊, 宁先进. 冷喷涂CoNiCrAlY涂层在Na2SO4熔盐中的热腐蚀行为[J]. 材料工程, 2016, 44(11): 45-50.
[12] 左平, 魏大盛, 王延荣. FGH95粉末高温合金裂纹闭合效应及裂纹扩展特性研究[J]. 材料工程, 2015, 43(8): 56-61.
[13] 江冯, 李萍, 程从前, 刘春慧, 赵杰. θ投影法和复合模型在预测耐热钢蠕变行为的比较分析[J]. 材料工程, 2015, 43(7): 87-92.
[14] 童第华, 吴学仁, 刘建中, 胡本润, 陈勃. 基于小裂纹理论的铸造钛合金ZTC4疲劳寿命预测[J]. 材料工程, 2015, 43(6): 60-65.
[15] 贺世美, 熊翔, 何利民. 新型Yb2SiO5环境障涂层1400℃高温氧化行为[J]. 材料工程, 2015, 43(4): 37-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn