Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (7): 67-72    DOI: 10.11868/j.issn.1001-4381.2014.07.013
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
等离子热障涂层构件高温热疲劳寿命预测研究
齐红宇1,2, 马立强1, 李少林1, 杨晓光1,2, 王亚梅1, 魏洪亮
1. 北京航空航天大学 能源与动力工程学院, 北京 100191;
2. 先进航空发动机协同创新中心, 北京, 100191
High Temperature Thermal Fatigue Life Prediction of Plasma Sprayed Thermal Barrier Coatings Structure
QI Hong-yu1,2, MA Li-qiang1, LI Shao-lin1, YANG Xiao-guang1,2, WANG Ya-mei1, WEI Hong-liang1
1. School of Energy and Power Engineering, Beihang University, Beijing 100191, China;
2. Collaborative Innovation Center of Advanced Aero-engine, Beijing 100191, China
全文: PDF(1874 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 针对等离子热障涂层构件的变形特点,在总结热障涂层热疲劳寿命相关文献研究成果的基础上,合理设计了平板和圆管试样的高温氧化与热疲劳试验。根据菲克定律,结合高温氧化实验数据建立粘接层Al贫化的数学模型。把粘接层Al浓度作为耦合氧化损伤的控制参量引入寿命预测模型,建立氧化损伤和热疲劳损伤耦合作用的等离子热障涂层寿命预测模型。寿命预测结果表明该寿命预测模型合理、方法可行。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
齐红宇
马立强
李少林
杨晓光
王亚梅
魏洪亮
关键词 等离子热障涂层高温氧化热疲劳寿命预测    
Abstract:According to the deformation characteristics of plasma sprayed ceramic thermal barrier coatings (TBC) structure and the summary of research for thermal fatigue life of TBC structure, high temperature oxidation test and thermal fatigue test of thermal barrier coating structures were designed and conducted. Based on the high temperature oxidation data and Fick's second law of diffusion, Al depletion model of bond coating was established. Then, Al concentration of bond coating was introduced to existing life prediction model. Combined with the thermal fatigue test data, life prediction model was established, which can characterize the coupling effect of oxidation damage and thermal fatigue damage. The life prediction results are reasonable and the method is feasible.
Key wordsplasma sprayed thermal barrier coating    high temperature oxidation    thermal fatigue    life prediction
收稿日期: 2013-01-15     
1:  V231.91  
基金资助:北京市科学技术委员会资助项目(D131100003113003);国家高科技发展计划863资助项目(2012AA052102);国际科技合作资助项目(2013DFA61590)
通讯作者: 齐红宇(1969-)男,副教授,硕导,博士,主要从事航空发动机结构及强度研究,联系地址:北京市海淀区学院路37号北京航空航天大学北配楼401室(100191),E-mail:qhy@buaa.edu.cn     E-mail: qhy@buaa.edu.cn
引用本文:   
齐红宇, 马立强, 李少林, 杨晓光, 王亚梅, 魏洪亮. 等离子热障涂层构件高温热疲劳寿命预测研究[J]. 材料工程, 2014, 0(7): 67-72.
QI Hong-yu, MA Li-qiang, LI Shao-lin, YANG Xiao-guang, WANG Ya-mei, WEI Hong-liang. High Temperature Thermal Fatigue Life Prediction of Plasma Sprayed Thermal Barrier Coatings Structure. Journal of Materials Engineering, 2014, 0(7): 67-72.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2014.07.013      或      http://jme.biam.ac.cn/jme/CN/Y2014/V0/I7/67
[1] MILLER R A. Current status of thermal barrier coatings-an overview[J]. Surface and Coatings Technology, 1987, 30(1): 1-11.
[2] 韩萌, 黄继华, 陈树海. 热障涂层应力与失效机理若干关键问题的研究进展与评述[J]. 航空材料学报, 2013, 33(5): 83-98.HAN M, HUANG J H, CHEN S H. Research progress and review on key problems of stress and failure mechanism of thermal barrier coating[J]. Journal of Aeronautical Materials, 2013, 33(5): 83-98.
[3] SHEFFLER K D, GUPTA D K. Current status and future trends in turbine application of thermal barrier coatings[J]. Journal of Engineering for Gas Turbines and Power, 1988, 110(4): 605-609.
[4] 钟锦岩, 牟仁德, 何英, 等. NiCoCrAlYHf 涂层与一种Ni基单晶高温合金循环氧化行为研究[J]. 材料工程, 2013,(8): 28-35.ZHONG J Y, MU R D, HE Y, et al. Thermal cyclic oxidation behavior between NiCoCrAlYHf bond coat and a kind of Ni-based single crystal superalloy[J]. Journal of Materials Engineering, 2013,(8): 28-35.
[5] SCHLICHTING K W, PADTURE N P, JORDAN E H, et al. Failure modes in plasma-sprayed thermal barrier coatings[J]. Materials Science and Engineering: A, 2003, 342(1): 120-130.
[6] BUSSO E P, LIN J, SAKURAI S, et al. A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system Part I: model formulation[J]. Acta Materialia, 2001, 49(9): 1515-1528.
[7] BUSSO E P, LIN J, SAKURAI S, et al. A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system Part II: life prediction model[J]. Acta Materialia, 2001, 49(9): 1529-1536.
[8] CHEN W R, WU X, DUDZINSKI D. Influence of thermal cycle frequency on the TGO growth and cracking behaviors of an APS-TBC[J]. Journal of Thermal Spray Technology, 2012, 21(6): 1294-1299.
[9] KERREBROCK J L. Aircraft Engines and Gas Turbines[M]. Cambridge, MA: MIT Press, 1992.
[10] HE M Y, MUMM D R, EVANS A G. Criteria for the delamination of thermal barrier coatings: with application to thermal gradients[J]. Surface and Coatings Technology, 2004, 185(2): 184-193.
[11] DEMASI J T, SHEFFLER K D, ORITIZ M. Thermal Barrier Coating Life Prediction Model Development. NASA-CR-182230, 1989.
[12] EVANS A G, MUMM D R, HUTCHINSON J W, et al. Mechanisms controlling the durability of thermal barrier coatings[J]. Progress in Materials Science, 2001, 46(5): 505-553.
[13] EVANS A G, HE M Y, HUTCHINSON J W. Mechanics-based scaling laws for the durability of thermal barrier coatings[J]. Progress in Materials Science, 2001, 46(3): 249-271.
[14] HE M Y, EVANS A G, HUTCHINSON J W. The ratcheting of compressed thermally grown thin films on ductile substrates[J]. Acta Materialia, 2000, 48(10): 2593-2601.
[15] QIAN G. Fracture Analysis and Microstructural Modeling of Thermal Spray Coatings. New York: School of Mechanical Engineering, State University of New York, USA, 1999.
[16] BRODIN H, ESKNER M. The influence of oxidation on mechanical and fracture behaviour of an air plasma-sprayed NiCoCrAlY bondcoat[J]. Surface and Coatings Technology, 2004, 187(1): 113-121.
[17] CHEN W R, WU X, MARPLE B R, et al. Oxidation and crack nucleation/growth in an air-plasma-sprayed thermal barrier coating with NiCrAlY bond coat[J]. Surface and Coatings Technology, 2005, 197(1): 109-115.
[18] EVANS H E, TAYLOR M P. Diffusion cells and chemical failure of MCrAlY bond coats in thermal-barrier coating systems[J]. Oxidation of Metals, 2001, 55(1-2): 17-34.
[19] 王亚梅. 热障涂层破坏机理及寿命分析方法的研究. 北京:北京航空航天大学, 2009.
[20] CHE C, WU G Q, QI H Y, et al. Depletion model of aluminum in bond coat for plasma-sprayed thermal barrier coatings [J]. Advanced Materials Research, 2009,75: 31-35.
[1] 江冯, 李萍, 程从前, 刘春慧, 赵杰. θ投影法和复合模型在预测耐热钢蠕变行为的比较分析[J]. 材料工程, 2015, 43(7): 87-92.
[2] 童第华, 吴学仁, 刘建中, 胡本润, 陈勃. 基于小裂纹理论的铸造钛合金ZTC4疲劳寿命预测[J]. 材料工程, 2015, 43(6): 60-65.
[3] 贺世美, 熊翔, 何利民. 新型Yb2SiO5环境障涂层1400℃高温氧化行为[J]. 材料工程, 2015, 43(4): 37-41.
[4] 任保轶, 王思林, 刘子儒, 张学军. 表面制备SiO2涂层的Ti2AlNb基合金高温氧化激活能研究[J]. 材料工程, 2013, 0(7): 6-10.
[5] 刘春慧, 程从前, 赵杰, 祝志超, 马海涛. MHZ常数在耐热钢持久性能预测中的应用[J]. 材料工程, 2012, 0(10): 12-16.
[6] 张鹏飞, 李建平, 蔡妍, 陆峰. 电弧离子镀AlYSi涂层抗高温氧化性能研究[J]. 材料工程, 2011, 0(1): 76-80.
[7] 贺定勇, 王晓芳, 崔丽, 蒋建敏, 李晓延. 铬含量对铁基涂层抗高温氧化性能的影响[J]. 材料工程, 2009, 0(8): 24-27.
[8] 王东生, 田宗军, 陈志勇, 沈理达, 刘志东, 黄因慧. TiAl合金表面激光重熔等离子喷涂MCrAlY涂层研究[J]. 材料工程, 2009, 0(7): 72-78.
[9] 赵杰, 李东明, 方园园. Manson-Haferd常数的选择及在蠕变持久寿命预测中的应用[J]. 材料工程, 2009, 0(6): 30-34.
[10] 许超, 张国栋, 苏彬. 高周疲劳和低周疲劳统一的能量表征方法研究[J]. 材料工程, 2007, 0(8): 65-68,72.
[11] 韩增祥. 金属热疲劳a-N曲线测定方法的研究[J]. 材料工程, 2007, 0(11): 45-48,53.
[12] 张鹏飞, 李建平, 蔡妍, 陆峰. K3合金复合涂层高温防护性能研究[J]. 材料工程, 2007, 0(10): 68-71.
[13] 李志军, 周兰章, 郭建亭, 姚俊. 返回料添加比例对K44合金热疲劳性能的影响[J]. 材料工程, 2005, 0(8): 24-27.
[14] 高宏波, 谢守明, 赵杰, 王来, 韩双起. 12Cr1MoV钢组织转变与剩余寿命预测[J]. 材料工程, 2005, 0(3): 40-42.
[15] 徐维普, 徐滨士, 张伟, 吴毅雄. 高速电弧喷涂Fe-Al/Cr3C2涂层高温性能研究[J]. 材料工程, 2004, 0(11): 3-6,10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn