Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (7): 79-84    DOI: 10.11868/j.issn.1001-4381.2014.07.015
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
7022铝合金FSJ拼连板材残余应力和变形分析
汪洪峰1,2, 左敦稳1, 戴晟1, 潘玲1
1. 南京航空航天大学 机电学院, 南京 210016;
2. 黄山学院 机电与信息工程学院, 安徽 黄山 245041
Residual Stress and Deformation of Jointed 7022 Aluminum Alloy by FSJ
WANG Hong-feng1,2, ZUO Dun-wen1, DAI Sheng1, PAN Ling1
1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
2. School of Mechanical Electronic & Information Engineering, Huangshan University, Huangshan 245041, Anhui, China
全文: PDF(2666 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用有限元方法对7022铝合金板材FSJ连接过程进行模拟,分别获得连接区的残余应力和变形规律,并通过实验验证模拟结果的正确性。通过模拟得出残余拉应力主要集中在连接区,连接区中间位置处在最大拉应力区,连接区两端和其他部位均是残余压应力;垂直于连接区方向上前进侧的变形也大于返回侧的变形,平行于连接区方向钥匙眼端比起始端翘起得高,整个变形如马鞍形状。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪洪峰
左敦稳
戴晟
潘玲
关键词 7022铝合金FSJ残余应力变形热力耦合    
Abstract:FSJ process of 7022 aluminum alloy was simulated by the finite element method. The residual stress and deformation laws were obtained by the simulation. The simulation results were verified correctly by the experiments. The simulation shows that the residual stress is mainly concentrated in the jointing region. The maximum tensile stress is located in the middle of jointing region. The residual compressive stress is located in the ends and other parts of jointing region. The deformation in the advancing side in the direction of vertical the jointing region is greater than that in the retreating side. The tilting in the key eye side is higher than that in the staring side. The whole deformation is such as the saddle shape.
Key words7022 aluminum alloy    FSJ    residual stress    deformation    thermal-mechanical coupling
收稿日期: 2012-08-18     
1:  TG404  
基金资助:国家自然科学基金资助项目((51175255,51305199); 安徽省高校优秀青年人才基金重点项目(2013SQRL089ZD);江苏省博士后基金(1201007C)
通讯作者: 左敦稳(1962-))男,教授,博导,研究方向:FSJ连接技术、高速铣削、金刚石涂层等,联系地址:南京航空航天大学机电学院(210016),E-mail:imit505@nuaa.edu.cn     E-mail: imit505@nuaa.edu.cn
引用本文:   
汪洪峰, 左敦稳, 戴晟, 潘玲. 7022铝合金FSJ拼连板材残余应力和变形分析[J]. 材料工程, 2014, 0(7): 79-84.
WANG Hong-feng, ZUO Dun-wen, DAI Sheng, PAN Ling. Residual Stress and Deformation of Jointed 7022 Aluminum Alloy by FSJ. Journal of Materials Engineering, 2014, 0(7): 79-84.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2014.07.015      或      http://jme.biam.ac.cn/jme/CN/Y2014/V0/I7/79
[1] KOSKA A, COELHO R S, SANTOS J D, et al. Microstructure of friction stir welding of aluminium alloy to magnesium alloy[J]. Scripta Materialia, 2009, 60: 953-956.
[2] 汪洪峰, 左敦稳, 邵定林, 等. 工艺参数对搅拌摩擦焊7022铝合金残余应力及耐磨耐蚀性能的影响[J]. 航空材料学报, 2011, 31(1): 31-37.WANG H F, ZUO D W, SHAO D L, et al. Effect of process parameters on the residual stress and wear and corrosion resistance of 7022 aluminium alloy by FSW[J]. Journal of Aeronautical Materials, 2011, 31(1): 31-37.
[3] MISHRA R S, MA Z Y. Friction stir welding and processing[J]. Materials Science and Engineering Review, 2005, 50(1-2): 1-78.
[4] GUERRA M, SCHMIDT C, MCCLURE J C, et al. Flow patterns during friction stir welding[J]. Materials Characterization, 2003, 49: 95-101.
[5] LIECHTY B C, WEBB B W. Modeling the frictional boundary condition in friction stir welding[J]. International Journal of Machine Tools & Manufacture, 2008, 48: 1474-1485.
[6] 汪洪峰, 左敦稳, 王珉, 等. 厚板7022铝合金搅拌摩擦焊接实验研究[J]. 功能材料, 2010, 41(11):2029-2033.WANG H F, ZUO D W, WANG M, et al. Experimental study on friction stir welded on thick plate of 7022 aluminium alloy[J]. Journal of Functional Materials, 2010, 41(11):2029-2033.
[7] 汪洪峰, 左敦稳, 王珉, 等. 7022铝合金搅拌摩擦焊焊接区的组织与性能[J]. 华南理工大学学报:自然科学版, 2010, 38(11): 12-16.WANG H F, ZUO D W, WANG M, et al. Microstructures and mechanical properties of welding zone of 7022 aluminium alloy after friction stir welding[J]. Journal of South China University of Technology:Natural Science Edition, 2010, 38(11): 12-16.
[8] 汪洪峰, 左敦稳, 邵定林, 等. 退火温度对7022铝合金干摩擦性能的影响[J]. 深圳大学学报:理工版, 2010, 27(2): 172-177.WANG H F, ZUO D W, SHAO D L, et al. The effect of annealing temperature to the tribological property of 7022 aluminum alloy[J]. Journal of Shenzhen University Science and Engineering, 2010, 27(2): 172-177.
[9] 汪洪峰, 左敦稳, 黄敏铭, 等. 不同温度和应变速率下的7022铝合金流动应力研究[J].南京航空航天大学学报:英文版, 2010, 27(3): 248-253.WANG H F, ZUO D W, HUANG M M, et al. High temperature rheological behavior of FSJ jointed region for 7022 aluminum alloy[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2010, 27(3): 248-253.
[10] ZUO D W, WANG H F, MIAO H, et al. Analysis on milling deformation of 7022 aluminum alloy blank jointed by FSJ[J]. Key Engineering Materials, 2012, 499: 27-32.
[1] 张昭, 吴奇, 张洪武. 转速对搅拌摩擦焊接搅拌区晶粒尺寸影响[J]. 材料工程, 2015, 43(7): 1-7.
[2] 吕凯, 刘向东, 王浩, 冯华, 李艳芬. 短切硅酸铝纤维增强硅溶胶型壳的抗弯强度及高温自重变形[J]. 材料工程, 2015, 43(7): 56-61.
[3] 张涛, 付明杰, 韩秀全, 吴为. TNW700钛合金板材热弯曲性能[J]. 材料工程, 2015, 43(7): 68-72.
[4] 黄烁, 王磊, 张北江, 赵光普. GH4706合金的热变形行为与显微组织演化[J]. 材料工程, 2015, 43(2): 41-46.
[5] 张盼, 叶凌英, 顾刚, 蒋海春, 张新明. 5A90铝锂合金超塑性变形的组织演变及变形机理[J]. 材料工程, 2014, 0(9): 51-56.
[6] 郑漫庆, 王高潮, 徐雪峰, 喻淼真. TC4-DT合金的超塑性变形及其本构方程[J]. 材料工程, 2014, 0(9): 63-67.
[7] 郑漫庆, 王高潮, 喻淼真, 徐雪峰. 应变速率循环法构建TC4-DT钛合金本构方程[J]. 材料工程, 2014, 0(8): 32-35.
[8] 张丁非, 耿青梅, 杨绪盛, 余大亮, 潘复生. 新型复合挤压工艺中温度对AZ61组织和性能的影响[J]. 材料工程, 2014, 0(7): 1-4.
[9] 崔俊华, 柯黎明, 刘文龙, 郭正华, 赵刚要, 方平. 搅拌摩擦焊接全过程热力耦合有限元模型[J]. 材料工程, 2014, 0(12): 11-17.
[10] 李卿, 郭鸿镇, 王彦伟, 赵张龙, 姚泽坤. GH4049合金的热变形行为及组织演变[J]. 材料工程, 2014, 0(12): 55-59.
[11] 邬小萍, 李德富, 郭胜利, 许晓庆, 胡捷, 贺金宇. ZnAl10Cu2合金在热变形过程中的球化及动态再结晶[J]. 材料工程, 2014, 0(12): 72-78.
[12] 周松, 谢里阳, 回丽, 张啸尘, 许良. 喷丸强化对2XXX铝合金疲劳寿命的影响[J]. 材料工程, 2014, 0(12): 86-91.
[13] 沙爱学, 李兴无, 王庆如. 变形量对TC18钛合金力学性能的影响[J]. 材料工程, 2014, 0(11): 34-37.
[14] 刘兆华, 王晓琪, 陈亮伟, 起华荣, 史庆南. 复合SPD制备超细晶6061铝合金的组织及性能[J]. 材料工程, 2014, 0(11): 62-66.
[15] 葛勇, 王韬, 厉蕾. 注射成型工艺参数对聚碳酸酯残余应力的影响[J]. 材料工程, 2014, 0(1): 24-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn