Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (8): 27-31    DOI: 10.11868/j.issn.1001-4381.2014.08.005
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
表面处理对CCTO/PVDF复合材料介电性能的影响
宋洪松, 赵天宇, 杨程
北京航空材料研究院, 北京 100095
Effect of Surface Treatment on Dielectric Properties of CCTO/PVDF Composites
SONG Hong-song, ZHAO Tian-yu, YANG Cheng
Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(1755 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 分别用十二烷基苯磺酸钠(SDBS)、十二烷基硫酸钠(SDS)和双-(γ-三乙氧基硅基丙基)四硫化物(Si69)对CaCu3Ti4O12 (CCTO)进行处理,采用溶液法制备处理后的CCTO/聚偏氟乙烯(PVDF)复合材料。采用XRD和SEM对复合材料的物相及微观结构进行分析,研究复合材料的介电性能与CCTO表面处理的关系。结果表明:经过表面处理的CCTO添加到PVDF中,提高了PVDF的介电常数,尤其是采用Si69处理的CCTO/PVDF复合材料,在1000Hz下介电常数达到了85,是不经过改性的CCTO/PVDF复合材料的5倍。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋洪松
赵天宇
杨程
关键词 表面处理介电性能复合材料    
Abstract:The calcium copper titanate (CaCu3Ti4O12, CCTO) ceramic particles were treated by dodecyl benzenesulfonic acid, sodium salt (SDBS), sodium dodecyl sulfate(SDS) and bistetrasulfide (Si69), the CCTO/polyvinylidene fluoride (PVDF) composites were prepared with solution method. The phase and microstructure of the composites were investigated by X-ray diffraction (XRD) and scanning electron microscopy(SEM). The relation between dielectric properties of composites and surface treatment of CCTO was discussed. The results indicate that the dielectric constant of PVDF increases when CCTO is surface treated, especially, the dielectric constant (at a frequency of 1000Hz) of CCTO@Si69/PVDF composite reaches the value of 85, which is 5 times than that of unmodified CCTO/PVDF composite.
Key wordssurface treatment    dielectric property    composite
收稿日期: 2013-02-26      出版日期: 2014-08-20
中图分类号:  TB33  
通讯作者: 宋洪松(1984-),男,工程师,硕士,从事聚合物基功能材料研究,联系地址:北京市81信箱71分箱(100095),E-mail:songhongsong@126.com     E-mail: songhongsong@126.com
引用本文:   
宋洪松, 赵天宇, 杨程. 表面处理对CCTO/PVDF复合材料介电性能的影响[J]. 材料工程, 2014, 0(8): 27-31.
SONG Hong-song, ZHAO Tian-yu, YANG Cheng. Effect of Surface Treatment on Dielectric Properties of CCTO/PVDF Composites. Journal of Materials Engineering, 2014, 0(8): 27-31.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.08.005      或      http://jme.biam.ac.cn/CN/Y2014/V0/I8/27
[1] DANG Z M, LIN Y Q, XU H P, et al. Fabrication and dielectric characterization of advanced BaTiO3/polyimide nanocomposites films with high thermal stability[J]. Adv Funct Mater,2008,18(10):1509-1517.
[2] XU J W, WONG C P. High dielectric constant SU8 composite photoresist for embedded capacitors[J]. J Appl Polym Sci,2007,103(3):1523-1528.
[3] DANG Z M, YUAN J K, ZHA J W,et al. Fundamentals, processes and applications of high-permittivity polymer-matrix composites[J]. Progress in Materials Science,2012,57(4):660-723.
[4] 尚继武,张以河,吕凤柱.高介电常数聚合物基复合材料研究进展[J].材料工程,2012,(5):87-93.SHANG J W,ZHANG Y H,LU F Z.Recent progress of high-dielectric-constant polymer composites[J].Journal of Materials Engineering,2012,(5):87-93.
[5] DONG L J, XIONG C X, QUAN H Y, et al. Polyvinyl-butyral/lead zirconate titanates composites with high dielectric constant and low dielectric loss[J]. Scripta Materialia,2006,55(9):835-837.
[6] 杨程, 刘大博, 成波, 等. 石墨/聚苯乙烯插层复合材料的介电性能研究[J]. 功能材料,2010,41(11):1194-1197.YANG C, LIU D B, CHENG B, et al. Dielectric performances of graphene/PS intercalation composite[J].Journal of Functional Materials,2010,41(11):1194-1197.
[7] FRESCO Z M, FRECHET J M J. Selective surface activation of a functional monolayer for the fabrication of nanometer scale thiol patterns and directed self-assembly of gold nanoparticles[J]. Journal of the American Chemical Society,2005,127( 23):8302-8303.
[8] DONG L J, XIONG C X, QUAN H Y, et al. Polyvinyl-butyral/lead zirconate titanates composites with high dielectric constant and low dielectric loss[J]. Scripta Materialia,2006,55(9):835-837.
[9] 杨程, 成波, 滕乐金, 等. 金-烷基硫醇的自组装及其聚合物基复合材料的介电性能[J]. 材料工程,2010,(5):34-37.YANG C, CHENG B, TENG L J, et al. Self-assembled gold-alkanethiols and dielectric properties of Au@ S-R12/polymer composites[J]. Journal of Materials Engineering,2010,(5):34-37.
[10] YAO J L, XIONG C X, DONG L J, et al. Enhancement of dielectric constant and piezoelectric coefficient of ceramic-polymer composites by interface chelation[J]. Journal of Materials Chemistry,2009,19:2817-2821.
[11] ARBATTI M, SHAN X B, CHENG Z Y. Ceramic-polymer composites with high dielectric constant[J]. Advanced Materials,2007,19(10):1369-1372.
[12] PANG H C, PATRA M K, VERMA A, et al. Study of the dielectric properties of barium titanate-polymer composites[J]. Acta Materialia,2006,54(12):3163-3169.
[13] FIRMINO M S, COSTA C M, SENCADAS V, et al. Effect of the ceramic grain size and concentration on the dynamical mechanical and dielectric behavior of poly(vinilidene fluoride)/Pd(Zr0.53Ti0.47)O3 composites[J]. Appl Phys A,2009,96(4):899-908.
[14] 杜国平. 高介电常数CaCu3Ti4O12 陶瓷材料的研究现状[J]. 上海师范大学学报:自然科学版,2009,38(3):326-330. DU G P. Research progress of CaCu3Ti4O12 ceramics with high dielectric constant[J]. Journal of Shanghai Normal University:Natural Sciences,2009,38(3):326-330.
[15] TIMOTHY B A, DEREK C S, ANTHONY R W. Giant barrier layer capacitance effects in CaCu3 Ti4O12 ceramics[J]. Advanced Materials,2002,14(18):1321-1323.
[16] DANG Z M, WANG H Y, ZHANG Y H, et al. Morphology and dielectric property of homogenous BaTiO3/PVDF nanocomposites prepared via the natural adsorption action of nanosized BaTiO3[J]. Macromolecular Rapid Communications,2005,26(14):1185-1189.
[17] 王法军, 周东祥, 龚树萍, 等. CaCu3 Ti4O12/聚偏氟乙烯复合材料的介电性能研究[J]. 材料导报,2009,23(5):11-13. WANG F J, ZHOU D X, GONG S P, et al. Study on the dielectric properties of CaCu3Ti4O12/PVDF composites[J]. Materials Review,2009,23(5):11-13.
[18] SUBRAMANIAN M A, LI D, DUAN N, et al. High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12phase[J]. Solid State Chem,2000,151(2):323-328.
[19] CHU B, ZHOU X, REN K, et al. A dielectric polymer with high electric energy density and fast discharge speed[J]. Science,2006,313(5875):334-336.
[20] SHEN Y, GU A J, LIANG G Z, et al. High performance CaCu3Ti4O12/cyanate ester composites with excellent dielectric properties and thermal resistance[J]. Composites Part A,2010,41(11):1668-1676.
[1] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[2] 陈丹玲, 黄志强, 何新华. Ta掺杂Na0.5Bi4.5Ti4O15陶瓷的显微结构和电性能[J]. 材料工程, 2020, 48(9): 93-99.
[3] 曹弘毅, 姜明顺, 马蒙源, 张法业, 张雷, 隋青美, 贾磊. 复合材料层压板分层缺陷相控阵超声检测参数优化方法[J]. 材料工程, 2020, 48(9): 158-165.
[4] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[5] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[6] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[7] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[8] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[9] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[10] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[11] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[12] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[13] 郭鸿霞, 张家萌, 王青敏, 毕科. 铁磁/铁电复合介质及其超材料结构微波性能[J]. 材料工程, 2020, 48(6): 43-49.
[14] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[15] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn