Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (8): 32-35    DOI: 10.11868/j.issn.1001-4381.2014.08.006
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
应变速率循环法构建TC4-DT钛合金本构方程
郑漫庆, 王高潮, 喻淼真, 徐雪峰
南昌航空大学 航空制造工程学院, 南昌 330063
Superplastic Constitutive Relationship of TC4-DT Titanium Alloy with Strain Rate Circulation Method
ZHENG Man-qing, WANG Gao-chao, YU Miao-zhen, XU Xue-feng
School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China
全文: PDF(1459 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用应变速率循环法在超塑拉伸机上对TC4-DT钛合金进行三组高温超塑性拉伸实验,变形温度为850~890℃,应变速率为3.3×10-5~3.3×10-3s-1。通过对拉伸实验数据的分析计算出TC4-DT钛合金动态再结晶激活能,并利用Arrhenius模型构建TC4-DT高温条件下的超塑性本构方程。结果表明:TC4-DT钛合金的流动应力对变形温度较为敏感,随着温度的升高,流变应力逐渐减小,软化机制愈发明显,870℃附近的超塑性较好,伸长率达到554%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑漫庆
王高潮
喻淼真
徐雪峰
关键词 TC4-DT应变速率循环本构方程超塑性变形    
Abstract:The superplastic deformation behavior of TC4-DT titanium alloy was performed on superplastic tensile testing machine at 850-890℃,and with strain rates range of 3.3×10-5-3.3×10-3s-1 based on the strain rate circulation method. The dynamic recrystallization activation energy was calculated through analysis of the tensile experimental data. The constitutive relationship of the TC4-DT titanium alloy based on the Arrhenius model was established. The results show that the flow stress of TC4-DT titanium alloy is sensitive to the deformation temperature. With the increasing of temperature, flow stress decreases and softening mechanism increases. The superplasticity around 870℃ is better and the elongation is 554%.
Key wordsTC4-DT titanium alloy    strain rate circulation    constitutive relationship    superplastic defor-mation
收稿日期: 2013-05-31      出版日期: 2014-08-20
中图分类号:  TG14  
基金资助:国家自然科学基金资助项目(51075196);江西省教育厅基金资助项目(GJJ12451)
通讯作者: 王高潮(1956-),男,教授,主要从事钛合金超塑成形技术研究工作,联系地址:南昌航空大学航空制造工程学院(330063),E-mail:wgchao@vip.sina.com     E-mail: wgchao@vip.sina.com
引用本文:   
郑漫庆, 王高潮, 喻淼真, 徐雪峰. 应变速率循环法构建TC4-DT钛合金本构方程[J]. 材料工程, 2014, 0(8): 32-35.
ZHENG Man-qing, WANG Gao-chao, YU Miao-zhen, XU Xue-feng. Superplastic Constitutive Relationship of TC4-DT Titanium Alloy with Strain Rate Circulation Method. Journal of Materials Engineering, 2014, 0(8): 32-35.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.08.006      或      http://jme.biam.ac.cn/CN/Y2014/V0/I8/32
[1] 曹春晓.选材判据的变化与高损伤容限钛合金的发展[J].金属学报,2002,38(增刊):4-11.CAO Chun-xiao. Change of material selection criterion and development of high damage-tolerant titanium alloy[J]. Acta Metallur gica Sinica,2002,38(Suppl):4-11.
[2] SWIFT T. Damage tolerance capability[J]. International Journal of Fatigue,1994,16(1):75-96.
[3] 郭萍, 赵永庆, 洪权,等.加工工艺对TC4-DT合金组织和性能的影响[J].材料热处理学报,2013,34(1):49-52.GUO Ping, ZHAO Yong-qing, HONG Quan, et al. Influence of process technology on microstructure and properties of TC4-DT titanium alloy[J]. Transactions of Materials and Heat Treatment,2013,34(1):49-52.
[4] 于兰兰, 毛小南, 李辉.温度对TC4-DT损伤容限型钛合金疲劳裂纹扩展行为的影响[J].稀有金属快报,2007,26(12):20-23.YU Lan-lan, MAO Xiao-nan, LI Hui. Effects of temperature on fatigue crack growth behavior of TC4-DT damage tolerance titanium alloy[J]. Rare Metals Letters,2007,26(12):20-23.
[5] AMS 4905C, titanium alloy, damage-tolerant grade plate 6Al-4Vbeta annealed[S].
[6] FENG B X, MAO X N, YANGB G J, et al. Residual stress field and thermal relaxation behavior of shot-peened TC4-DT titanium alloy[J]. Materials Science and Engineering:A,2009,512(1-2): 105-108.
[7] DURET N. Titanium for damage tolerance application on A380. LUTJERING G, ALBRECHT J. The 10th Conference on Titanium. Hamburg:TMS,2003.2667-2671.
[8] 李辉, 曲恒磊, 赵永庆, 等.显微组织对Ti-6Al-4VELI合金疲劳裂纹扩展速率的影响[J]. 稀有金属快报,2006,25(3):26-29.LI Hui, QU Heng-lei, ZHAO Yong-qing, et al. Effects of microstructure on fatigue crack growth rate of damage tolerance for TC4-DT alloy[J]. Rare Metals Letters,2006,25(3):26-29.
[9] BALASUBRAHMANYAM V V, PRASAD Y V R K. Deformation behavior of beta titanium alloy Ti-10V-4.5Fe-1.5Al in hot upset forging[J]. Materials Science and Engineering:A,2002,336(1-2):150-158.
[10] YANG Jing-hong, LIU Qing-you, SUN Dong-bai, et al. Recrystallization behavior of deformed austenite in high strength microalloyed pipeline steel[J]. Journal of Iron and Steel Research,International,2009,16(1):75-80.
[11] 王智祥, 刘雪峰, 谢建新. AZ91镁合金高温变形本构关系[J]. 金属学报,2008,44(11):1378-1383. WANG Zhi-xiang, LIU Xue-feng, XIE Jian-xin. Constitutive relationship of hot deformation of AZ91 magnesium alloy[J]. Acta Metallurgica Sinica,2008,44(11):1378-1383.
[12] 范定兵, 王高潮, 赵晓宾. Ti-15-3超塑性研究[J]. 南昌航空大学学报:自然科学版,2007,21(1):26-29. FAN Ding-bing, WANG Gao-chao, ZHAO Xiao-bin. Research on superplasticity of Ti-15-3 titanium alloy[J]. Journal of Nanchang Institute of Aeronautical Technology:Natural Science Edition,2007,21(1):26-29.
[13] 耿启东, 王高潮, 董洪波. TAl5合金应变速率循环超塑性研究[J]. 热加工工艺,2008,37(11):43-48. GENG Qi-dong, WANG Gao-chao, DONG Hong-bo. Superplasticity of TA15 titanium alloy induced by strain rate cycling[J]. Hot Working Technology,2008,37(11):43-48.
[14] SELLARS C M. On the mechanism of deformation[J].Acta Metallurgica,1966,14:1136-1138.
[1] 李慧中, 杨雷, 王岩, 谭钢, 黄钲钦, 刘敏学. 热挤压态Ni-Co-Cr基粉末高温合金热加工行为[J]. 材料工程, 2020, 48(9): 115-123.
[2] 王宇, 熊柏青, 李志辉, 温凯, 黄树晖, 李锡武, 张永安. 新型超高强Al-Zn-Mg-Cu合金热压缩变形行为及微观组织特征[J]. 材料工程, 2019, 47(2): 99-106.
[3] 马琳, 李伟, 白娇娇, 赵丰停. 粉末冶金Ti-14Mo-2.1Ta-0.9Nb-7Zr合金热变形行为[J]. 材料工程, 2018, 46(10): 47-54.
[4] 付平, 刘栩, 戴青松, 张佳琪, 邓运来. 5083铝合金热压缩流变应力曲线修正与本构方程[J]. 材料工程, 2017, 45(8): 76-82.
[5] 杨志强, 刘正东, 何西扣, 刘宁. 反应堆压力容器用SA508Gr.4N钢的热变形行为[J]. 材料工程, 2017, 45(8): 88-95.
[6] 王忠军, 付学丹, 朱晶, 周乐, 王洪斌. ZK60和ZK60-1.0Er镁合金热压缩变形和加工图[J]. 材料工程, 2017, 45(3): 102-111.
[7] 程明阳, 郝世明, 谢敬佩, 王爱琴, 马窦琴, 孙亚丽. SiCP/Al-Cu复合材料的高温热变形行为[J]. 材料工程, 2017, 45(2): 17-23.
[8] 仇琍丽, 高文理, 陆政, 冯朝辉. 7A85铝合金的热压缩流变行为与显微组织[J]. 材料工程, 2016, 44(1): 33-39.
[9] 郑漫庆, 王高潮, 徐雪峰, 喻淼真. TC4-DT合金的超塑性变形及其本构方程[J]. 材料工程, 2014, 0(9): 63-67.
[10] 刘延辉, 姚泽坤, 宁永权, 郭鸿镇. 生物医用TC20钛合金高温变形行为及本构关系[J]. 材料工程, 2014, 0(7): 16-21.
[11] 李卿, 郭鸿镇, 王彦伟, 赵张龙, 姚泽坤. GH4049合金的热变形行为及组织演变[J]. 材料工程, 2014, 0(12): 55-59.
[12] 滑勇之, 关立文, 刘辛军, 崔海龙. 铝合金7050-T7451高温高应变率本构方程及修正[J]. 材料工程, 2012, 0(12): 7-13.
[13] 杨勇进, 张晓云, 刘明辉. TC4-DT钛合金与异种材料接触腐蚀与防护研究[J]. 材料工程, 2012, 0(12): 55-60.
[14] 汪洪峰, 左敦稳, 黄铭敏, 陈明和. 5050铝合金板材高温流变行为研究[J]. 材料工程, 2011, 0(1): 23-27.
[15] 易幼平, 杨积慧, 蔺永诚. 7050铝合金热压缩变形的流变应力本构方程[J]. 材料工程, 2007, 0(4): 20-22,26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn