Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (8): 36-40    DOI: 10.11868/j.issn.1001-4381.2014.08.007
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
冲击强化对304奥氏体不锈钢拉伸性能的影响
高玉魁
同济大学 航空航天与力学学院, 上海 200092
Influence of Impact Enhancements on Tensile Property of 304 Austenite Steel
GAO Yu-kui
College of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
全文: PDF(2245 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 选用304奥氏体不锈钢进行喷丸强化和表面机械研磨等硬球冲击强化。采用X射线衍射和透射电子显微分析技术测定304奥氏体不锈钢冲击强化形成的微观组织结构变化,并进行室温下的拉伸实验,研究冲击强化对微观组织与拉伸性能的影响。结果表明:冲击强化导致奥氏体转变为马氏体,而且表层晶粒明显细化,这提高了屈服强度和抗拉强度等拉伸性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高玉魁
关键词 喷丸强化表面机械研磨相变    
Abstract:304 austenite stainless steel was shot peened (SP) and surface mechanical attrition treated (SMAT). Microstructure changes caused by impact enhancements were determined by X-ray diffraction and transmission electron microscopy. Moreover, the effect of impact enhancements on the microstructure and tensile property was studied. The results show that austenite transforms to martensite induced by impact at the surface enhanced layer and that fine grains are formed in the severe plastic deformed surface layer. These changes increase yield strength and tensile strength.
Key wordsshot peening    surface mechanical attrition treatment    phase transformation
收稿日期: 2013-11-25      出版日期: 2014-08-20
中图分类号:  TG156  
基金资助:国家自然科学基金资助项目(11372226);中央高校基本业务费专项资金和同济大学英才计划资助项目(1330219133,13302380043);国家冷轧板带装备及工艺工程技术研究中心开放课题资助项目(NECSR-201306);国家重点基础研究发展计划资助项目(2010CB833105)
通讯作者: 高玉魁(1973-),男,博士,研究员,博导,主要从事疲劳断裂和表面强化方面的研究工作,联系地址:上海市彰武路100号同济大学航空航天与力学学院(200092),E-mail:yukuigao@tongji.edu.cn     E-mail: yukuigao@tongji.edu.cn
引用本文:   
高玉魁. 冲击强化对304奥氏体不锈钢拉伸性能的影响[J]. 材料工程, 2014, 0(8): 36-40.
GAO Yu-kui. Influence of Impact Enhancements on Tensile Property of 304 Austenite Steel. Journal of Materials Engineering, 2014, 0(8): 36-40.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.08.007      或      http://jme.biam.ac.cn/CN/Y2014/V0/I8/36
[1] GAO Yu-kui. Microstructure changes and residual stresses of each phase caused by shot peening in 304 austenitic stainless steel[J]. Journal of Aeronautical Materials,2004,24(4):18-21.
[2] GAO Yu-kui, YAO Mei, SHAO Pei-ge, et al. Another mechanism for fatigue strength improvement of metallic parts by shot peening[J]. Journal of Materials Engineering and Performance,2003,12(5):507-511.
[3] GAO Yu-kui, LI Xiang-bin, YANG Qing-xiang, et al. Influence of surface integrity on fatigue strength of 40CrNi2Si2MoVA steel[J]. Materials Letters,2007,62(2):466-469.
[4] GAO Yu-kui. Surface modification of TA2 pure titanium by low energy high current pulsed electron beam treatments[J]. Applied Surface Science,2011,257(17):7455-7460.
[5] GAO Yu-kui. Improvement of fatigue property in 7050-T7451 aluminum alloy by laser peening and shot peening[J]. Materials Science and Engineering:A,2011,528(10-11):3823-3828.
[6] GAO Yu-kui, WU X R. Experimental investigation and fatigue life prediction for 7475-T7351 aluminum alloy with and without shot peeneing-induced residual stresses[J]. Acta Materialia,2011,59(9):3737-3747.
[7] ROLAND T, RETRAINT D, LU K, et al. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment[J]. Scripta Materialia, 2006,54(11):1949-1954.
[8] HAO Yun-wei, DENG Bo, ZHONG Cheng, et al. Effect of surface mechanical attrition treatment on corrosion behavior of 316 stainless steel[J]. Journal of Iron and Steel Research,International,2009,16(2):68-72.
[9] SHAWA L L, TIAN Jia-wan, ORTIZ A L, et al. A direct comparison in the fatigue resistance enhanced by surface severe plastic deformation and shot peening in a C-2000 superalloy[J]. Materials Science and Engineering:A,2010,527(4-5):986-994.
[10] TSUJIA N, MAKI T. Enhanced structural refinement by combining phase transformation and plastic deformation in steels[J]. Scripta Materialia,2009,60(12):1044-1049.
[11] 张洪旺, 刘刚, 黑祖昆, 等. 表面机械研磨诱导AISI 304不锈钢表层纳米化Ⅰ.组织与性能[J]. 金属学报,2003,39(4):342-346. ZHANG Hong-wang, LIU Gang, HEI Zu-kun, et al. Stainless steel induced by surface mechanical attrition treatment I. structure and property[J]. Acta Metallurgica Sinica,2003,39(4):342-346.
[12] 张洪旺, 刘刚, 黑祖昆,等. 表面机械研磨诱导AISI 304不锈钢表层纳米化II.晶粒细化机理[J]. 金属学报,2003,39(4):347-350. ZHANG Hong-wang, LIU Gang, HEI Zu-kun, et al. Stainless steel induced by surface mechanical attrition treatment II. grain refinement mechanism[J]. Acta Metallurgica Sinica,2003,39(4):347-350.
[13] 张淑兰, 陈怀宁, 林泉洪, 等. 工业纯铁的表面纳米化及其机制[J]. 有色金属,2003,55(4):5-8. ZHANG Shu-lan, CHEN Huai-ning, LIN Quan-hong, et al. Surface nanocrystallization of industrial pure titanium and its mechanism[J]. Nonferrous Metals,2003,55(4):5-8.
[14] 冯淦, 石连捷, 吕坚, 等. 低碳钢超声喷丸表面纳米化的研究[J]. 金属学报,2000,36(3):300-303. FENG Gan, SHI Lian-jie, LV Jian, et al.Investigation of surface nanocrystallization of a low carbon steel induced by ultrasonic shot peening[J]. Acta Metallurgica Sinica,2000,36(3):300-303.
[15] 吕爱强, 刘刚, 刘春明. 机械研磨诱导316L不锈钢表层组织的演变[J]. 金属学报,2004,40(9):943-949. LV Ai-qiang, LIU Gang, LIU Chun-ming. Microstructural evolution of the surface layer of 316L stainless steel induced by mechanical attrition[J]. Acta Metallurgica Sinica,2004,40(9):943-949.
[16] 石继红, 武保林,刘刚. 316L不锈钢表面纳米化后腐蚀性能研究[J]. 材料工程,2005,(10):42-46. SHI Ji-hong, WU Bao-lin, LIU Gang. Study on corrosion property of 316L stainless steel with nanocrystalline surface[J]. Journal of Materials Engineering,2005,(10):42-46.
[17] 赵新奇, 熊天英, 徐政, 等. 40Cr钢表面纳米化的研究[J]. 同济大学学报,2004,32(2):218-221. ZHAO Xin-qi, XIONG Tian-ying, XU Zheng, et al. Nanocrystallization of cementite prior to that of ferrite in 40Cr steel in surface nanocrystallization processing[J].Journal of Tongji University,2004,32(2):218-221.
[18] 张俊宝, 刘志文, 宋洪伟, 等. 高能机械加工表面纳米化40Cr钢组织结构与力学性能[J]. 航空材料学报,2004,24(6):11-15. ZHANG Jun-bao, LIU Zhi-wen, SONG Hong-wei, et al. Microstructure and mechanical properties of 40Cr steel nano-crystallized surface after energy peening[J]. Journal of Aeronautical Materials,2004,24(6):11-15.
[19] 高玉魁. 表面完整性理论与应用[M]. 北京:化学工业出版社,2014. GAO Yu-kui.Surface Integrity Theory and Its Applications[M].Beijing:Chemical Industry Press,2014.
[20] 高玉魁,赵振业. 齿轮的表面完整性与抗疲劳制造技术的发展趋势[J]. 金属热处理,2014,39(4):1-6. GAO Yu-kui, ZHAO Zhen-ye. Development trend of surface integrity and anti-fatigue manufacture of gears[J]. Heat Treatment of Metals,2014,39(4):1-6.
[1] 冯昊, 符殿宝, 程佳乐, 唐寅林, 陈俊锋, 王晨, 邹林池. 压缩预变形对7050铝合金非等温时效析出行为的影响[J]. 材料工程, 2020, 48(9): 107-114.
[2] 甄睿, 方信贤, 皮锦红, 许恒源, 吴震. 热处理对Mg97.5Gd1.9Zn0.6合金组织与力学性能的影响[J]. 材料工程, 2020, 48(9): 132-137.
[3] 杨泽南, 李赛, 于俊杰, 谢强, 王祯, 张明达, 董浩凯, 张强, 杨志刚. 合金元素配分对珠光体相变热动力学及其奥氏体化影响的研究进展[J]. 材料工程, 2020, 48(7): 61-71.
[4] 吴胜财, 罗弦, 龙永富, 张露, 徐本军, 黄润. 二氧化硅掺杂对二氧化钛晶型转变机理的影响[J]. 材料工程, 2020, 48(11): 99-107.
[5] 陈颖, 姜庆辉, 辛集武, 李鑫, 孙兵杨, 杨君友. 相变储能材料及其应用研究进展[J]. 材料工程, 2019, 47(7): 1-10.
[6] 刘明, 严继康, 杨钢, 姜贵民, 杜景红, 甘国友, 易健宏. 铜掺杂纳米二氧化钛颗粒的相变研究[J]. 材料工程, 2019, 47(4): 105-112.
[7] 张浩, 李海丽. 复合乳化剂作用下相变调湿复合材料的性能和机理[J]. 材料工程, 2019, 47(12): 157-162.
[8] 吴楠, 崔雪飞, 魏衍广, 陶海明, 罗峥. Cr含量对Ti5Mo5V3Al-Cr系合金等温相变动力学和TTT图的影响[J]. 材料工程, 2018, 46(9): 115-121.
[9] 宗志芳, 杨麟, 张浩, 熊磊. 环境协调型Ce-La/TiO2复合材料的制备及光-湿-热性能[J]. 材料工程, 2018, 46(5): 145-150.
[10] 张浩. 基于RBF网络优化制备均匀粒度分布的微米级SiO2基相变调湿复合材料[J]. 材料工程, 2017, 45(8): 24-29.
[11] 何银花, 王发展. 对流扩散-多相相变体系内柱状晶/等轴晶形成过程的数值模拟[J]. 材料工程, 2017, 45(6): 104-111.
[12] 林森, 孙仕勇, 邹翔, 郭鹏云. 改性蒙脱石/石蜡相变储热微囊的制备与性能表征[J]. 材料工程, 2017, 45(3): 35-40.
[13] 李尧, 卢怡, 曹文斌. W掺杂二氧化钒的水热晶化机理及其相变性能[J]. 材料工程, 2017, 45(11): 58-65.
[14] 徐永锋, 李明, 罗熙, 余琼粉, 王云峰, 冷从斌. 新型复合相变储能材料Na/Paraffin的制备与性能分析[J]. 材料工程, 2017, 45(11): 66-71.
[15] 冷从斌, 季旭, 罗熙, 李明, 余琼粉, 徐永锋. Na2SO4·10H2O/EG复合相变材料的制备与性能分析[J]. 材料工程, 2017, 45(1): 58-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn