Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (8): 41-45    DOI: 10.11868/j.issn.1001-4381.2014.08.008
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
N,O-羧甲基壳聚糖磁性复合微球的制备与表征
马烽1,2, 陆丰艳2, 秦岩2, 王睿1
1. 山东大学 环境科学与工程学院, 济南 250100;
2. 齐鲁工业大学 化学与制药工程学院, 济南 250353
Preparation and Characterization of Magnetic N,O-carboxymethyl Chitosan Composite Microspheres
MA Feng1,2, LU Feng-yan2, QIN Yan2, WANG Rui1
1. School of Environmental Science and Engineering, Shandong University, Jinan 250100, China;
2. School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, China
全文: PDF(1733 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用水热法制备出NiFe2O4磁性纳米粒子。以壳聚糖和氯乙酸为原料,在碱性条件下制得N,O-羧甲基壳聚糖。以羧甲基壳聚糖为骨架材料,戊二醛作为交联剂,采用乳化交联法制备出N,O-羧甲基壳聚糖磁性微球。通过红外光谱、X射线衍射、扫描电镜、热重分析以及交变梯度磁强计对材料的组成、结构、形貌、热性能和磁性能进行测试表征。结果表明:合成的NiFe2O4为立方尖晶石结构,粒径为10~80nm,饱和磁化强度为43.3A·m2·kg-1。制备的N,O-羧甲基壳聚糖磁性微球为表面光滑的球形,粒径为6~25μm,微球中NiFe2O4的质量分数为35.6%,饱和磁化强度为14.3A·m2·kg-1
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马烽
陆丰艳
秦岩
王睿
关键词 水热法铁酸镍N,O-羧甲基壳聚糖乳化交联法磁性微球    
Abstract:The NiFe2O4 nanoparticles were synthesized by hydrothermal synthesis method. N,O-carboxymethyl chitosan (N,O-CMC) was obtained with chloroacetic acid and chitosan in alkaline condition. Magnetic N,O-carboxymethyl chitosan microspheres (magnetic N,O-CMC microspheres) were prepared by emulsion crosslinking method using carboxymethyl chitosan as matrix material and glutaraldehyde as a crosslinking agent. The compositions, structure, morphology, thermal stability and magnetic property of the materials were characterized by fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and alternating gradient magnetometer (AGM). The results show that the NiFe2O4 particles have cubic spinel structure, the particle diameter is 10-80nm, saturation magnetization is 43.3A·m2·kg-1. The magnetic N,O-carboxymethyl chitosan microspheres are spherical shape and have smooth surface, the diameter is about 6-25μm, mass fraction of NiFe2O4 nanoparticles in magnetic microspheres is 35.6%, and the saturation magnetization is 14.3A·m2·kg-1.
Key wordshydrothermal synthesis method    NiFe2O4    N,O-carboxymethyl chitosan    emulsion cross-linking method    magnetic microsphere
收稿日期: 2014-04-08     
1:  TB33  
基金资助:山东省博士后创新项目专项资助资金(200903051);山东省科技计划资助项目(2006GG2203027,2010G0020324);济南市高校自主创新计划资助(201004049)
通讯作者: 马烽(1967-),男,教授,博士,从事多相传热与化工新材料方面研究工作,联系地址:山东省济南市长清区大学路3501号齐鲁工业大学化学与制药工程学院(250353),E-mail:mafengch@163.com     E-mail: mafengch@163.com
引用本文:   
马烽, 陆丰艳, 秦岩, 王睿. N,O-羧甲基壳聚糖磁性复合微球的制备与表征[J]. 材料工程, 2014, 0(8): 41-45.
MA Feng, LU Feng-yan, QIN Yan, WANG Rui. Preparation and Characterization of Magnetic N,O-carboxymethyl Chitosan Composite Microspheres. Journal of Materials Engineering, 2014, 0(8): 41-45.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2014.08.008      或      http://jme.biam.ac.cn/jme/CN/Y2014/V0/I8/41
[1] BARRETO A, SANTIAGO V R, MAZZETTO S E, et al. Magnetic nanoparticles for a new drug delivery system to control quercetin releasing for cancer chemotherapy[J]. Journal of Nanoparticle Research,2011,13(12):6545-6553.
[2] PENG T, ZHANG X, LV H, et al. Preparation of NiFe2O4 nanoparticles and its visible-light-driven photoactivity for hydrogen production[J]. Catalysis Communications,2012,28:116-119.
[3] FORTIN J, WILHELM C, SERVAIS J, et al. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia[J]. Journal of the American Chemical Society,2007, 129(9):2628-2635.
[4] BRULS D M, EVERS T H, KAHLMAN J, et al. Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles[J]. Lab on a Chip,2009,(24):3504-3510.
[5] ZHAO H, ZHENG Z, WONG K W, et al. Fabrication and electrochemical performance of nickel ferrite nanoparticles as anode material in lithium ion batteries[J]. Electrochemistry Communications,2007,9(10):2606-2610.
[6] AHLAWAT A, SATHE V G, REDDY V R, et al. Mossbauer, Raman and X-ray diffraction studies of superparamagnetic NiFe2O4 nanoparticles prepared by sol-gel auto-combustion method[J]. Journal of Magnetism and Magnetic Materials,2011,323(15):2049-2054.
[7] SIVAKUMAR P, RAMESH R, RAMANAND A, et al. Synthesis and characterization of NiFe2O4 nanoparticles and nanorods[J]. Journal of Alloys and Compounds,2013,563:6-11.
[8] CHENG Y, ZHENG Y, WANG Y, et al. Synthesis and magnetic properties of nickel ferrite nano-octahedra[J]. Journal of Solid State Chemistry,2005,178(7):2394-2397.
[9] QIN J, LAURENT S, JO Y S, et al. A high performance magnetic resonance imaging T2 contrast agent[J]. Advanced Materials,2007,19(14):1874-1878.
[10] KIM D K, MIKHAYLOVA M, WANG F H, et al. Starch-coated superparamagnetic nanoparticles as MR contrast agents[J]. Chemistry of Materials,2003,15(23):4343-4351.
[11] LEE H, LEE E, KIM D K, et al. Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging[J]. Journal of the American Chemical Society,2006,128(22):7383-7389.
[12] SANTRA S, TAPEC R, THEODOROPOULOU N, et al. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion:the effect of nonionic surfactants[J]. Langmuir,2001,17(10):2900-2906.
[13] KOUASSI G K, IRUDAYARAJ J. Magnetic and gold-coated magnetic nanoparticles as a DNA sensor[J]. Analytical Chemistry,2006,78(10):3234-3241.
[14] ZHAO H, JEFFREY G, URS O H. Process and formulation variables in the preparation of injectable and biodegradable magnetic microspheres[J]. Biomagnetic Research and Technology, 2007,6(2):1-11.
[15] ZHANG J, ZHANG S T, WANG Y P, et al. Composite magnetic microspheres: preparation and characterization[J]. Journal of Magnetism and Magnetic Materials,2007,309(2):197-201.
[1] 张昭, 吴奇, 张洪武. 转速对搅拌摩擦焊接搅拌区晶粒尺寸影响[J]. 材料工程, 2015, 43(7): 1-7.
[2] 赵健闯, 胡建东, 孟繁有, 王耀民. TiBCN陶瓷线切割加工表面质量及蚀除机理[J]. 材料工程, 2015, 43(7): 21-25.
[3] 张涛, 付明杰, 韩秀全, 吴为. TNW700钛合金板材热弯曲性能[J]. 材料工程, 2015, 43(7): 68-72.
[4] 刘伟, 曹腊梅, 王岭, 徐彩虹, 益小苏. RTM成型工艺对Cf/SiBCN陶瓷基复合材料性能的影响[J]. 材料工程, 2015, 43(6): 1-6.
[5] 岳远杰, 唐荻, 武会宾, 梁金明, 巨彪. Nb对高含Cl-强酸性溶液环境中低合金钢腐蚀性能的影响[J]. 材料工程, 2015, 43(6): 14-20.
[6] 高党鸽, 陈琛, 吕斌, 马建中. 原位制备季铵盐聚合物/纳米ZnO复合抗菌剂[J]. 材料工程, 2015, 43(6): 38-45.
[7] 王梦梵, 陈旺, 苏世州, 韩旭, 徐樑华, 曹维宇. PAN纤维炭化过程中缺陷结构的温度效应[J]. 材料工程, 2015, 43(6): 66-70.
[8] 江陆, 孙新军, 李昭东, 雍岐龙, 王长军. 两相区回火温度对Mn-Mo系微合金钢亚稳奥氏体形成及力学性能的影响[J]. 材料工程, 2015, 43(5): 1-7.
[9] 卢棋, 何国球, 陈淑娟, 佘萌, 刘颺, 杨洋, 朱旻昊. 热机械训练过程中Fe-Mn-Si系形状记忆合金的组织演变[J]. 材料工程, 2015, 43(4): 8-12.
[10] 谭毅, 廖娇, 李佳艳, 石爽, 王清, 游小刚, 李鹏廷, 姜辛. 电子束熔炼Inconel740合金不同热处理状态下的组织演变与显微硬度[J]. 材料工程, 2015, 43(4): 19-24.
[11] 贺显聪, 郝菀, 皮锦红, 张传香, 沈鸿烈. 合成Cu2ZnSnS4薄膜四元共电沉积机理与退火相转变[J]. 材料工程, 2015, 43(4): 66-72.
[12] 彭建, 彭毅, 韩韡, 潘复生. 挤压温度对Mg-2Zn-Mn-0.5Nd镁合金组织和性能的影响[J]. 材料工程, 2015, 43(3): 23-27.
[13] 郝文魁, 刘智勇, 马岩, 杜翠薇, 李晓刚, 胡山山. 不同pH的碱性环境中16Mn钢及热影响区应力腐蚀行为[J]. 材料工程, 2015, 43(3): 28-34.
[14] 邹凯, 李蓉萍, 刘永生, 田磊, 冯松. Sb掺杂ZnTe薄膜结构及其光电性能[J]. 材料工程, 2015, 43(3): 35-41.
[15] 张同环, 周仕学, 牛海丽, 肖成柱, 王乃飞. 碳助磨制备纳米镁铝储氢合金的结构及储氢性能研究[J]. 材料工程, 2015, 43(3): 48-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn