Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (8): 105-114    DOI: 10.11868/j.issn.1001-4381.2014.08.019
  综述 本期目录 | 过刊浏览 | 高级检索 |
纳米结构热障涂层研究进展
黄亮亮, 孟惠民, 唐静
北京科技大学 腐蚀与防护中心, 北京 100083
Research Progress on Nanostructured Thermal Barrier Coatings
HUANG Liang-liang, MENG Hui-min, TANG Jing
Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(3856 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 本文主要综述了目前制备纳米结构热障涂层的三种方法,即大气等离子喷涂、溶液前驱体等离子喷涂和悬浮液等离子喷涂,并对这三种方法的工艺过程、制备原理、涂层的微观结构特征和研究现状进行了归纳。最后,总结了纳米结构热障涂层研究目前存在的问题,并对其发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄亮亮
孟惠民
唐静
关键词 纳米结构热障涂层等离子喷涂溶液前驱体悬浮液    
Abstract:There were mainly three methods used to prepare the nanostructured thermal barrier coatings, which were atmospheric plasma spraying, solution precursor plasma spraying and suspension plasma spraying. This paper reviewed preparation process and principles, microstructure characteristics and research status of these three methods. At last, the problems of nanostructured thermal barrier coatings at present study were summarized, and the development direction of nanostructured thermal barrier coatings were also proposed.
Key wordsnanostructure    thermal barrier coating    plasma spraying    solution precursor    suspension
收稿日期: 2013-09-07     
1:  V254.2  
通讯作者: 孟惠民(1963-),男,教授,博士生导师,主要研究方向为电化学、热喷涂、腐蚀与防护,联系地址:北京市海淀区学院路30号北京科技大学腐蚀楼223(100083),E-mail:menghm16@126.com     E-mail: menghm16@126.com
引用本文:   
黄亮亮, 孟惠民, 唐静. 纳米结构热障涂层研究进展[J]. 材料工程, 2014, 0(8): 105-114.
HUANG Liang-liang, MENG Hui-min, TANG Jing. Research Progress on Nanostructured Thermal Barrier Coatings. Journal of Materials Engineering, 2014, 0(8): 105-114.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2014.08.019      或      http://jme.biam.ac.cn/jme/CN/Y2014/V0/I8/105
[1] XU Z H, HE L M, MU R, et al. Influence of the deposition energy on the composition and thermal cycling behavior of La2-(Zr0.7-Ce0.3)2O7 coatings[J]. Journal of the European Ceramic Society,2009,29(9):1771-1779.
[2] EVANS A G, MUMM D R, HUTCHINSON J W, et al. Mechanisms controlling the durability of thermal barrier coatings[J]. Progress in Materials Science,2001,46(5):505-553.
[3] SCHULZ U, LEYENS C, FRITSCHER K, et al. Some recent trends in research and technology of advanced thermal barrier coatings[J]. Aerospace Science and Technology,2003,7(1):73-80.
[4] MUMM D R, EVANS A G, SPITSBERG I T. Characterization of a cyclic displacement instability for a thermally grown oxide in a thermal barrier system[J]. Acta Materialia,2001,49(12):2329-2340.
[5] WRIGHT P K. Influence of cyclic strain on life of a PVD TBC[J]. Materials Science and Engineering:A,1998,245(2):191-200.
[6] 曹学强.热障涂层材料[M].北京:科学出版社,2007.23-25,231-245.CAO X Q.Thermal Barrier Coating Materials[M].Beijing:Science Press,2007.23-25,231-245.
[7] FENECH J, DALBIN M, BARNABE A, et al. Sol-gel processing and characterization of (RE-Y)-zirconia powders for thermal barrier coatings[J]. Powder Technology,2011,208(2):480-487.
[8] RAUF A, YU Q, JIN L, et al. Microstructure and thermal properties of nanostructured lanthana-doped yttria-stabilized zirconia thermal barrier coatings by air plasma spraying[J]. Scripta Materialia,2012,66(2):109-112.
[9] RAHELEH A P, REZA S R, REZA M, et al. Improving the thermal shock resistance of plasma sprayed CYSZ thermal barrier coatings by laser surface modification[J]. Optics and Lasers in Engineering,2012,50(5):780-786.
[10] JIN L, NI L Y, YU Q H, et al. Thermal cyclic life and failure mechanism of nanostructured 13wt%Al2O3 doped YSZ coating prepared by atmospheric plasma spraying[J]. Ceramics International,2012,38(4):2983-2989.
[11] PAN Z Y, WANG Y, WANG C H, et al. The effect of SiC particles on thermal shock behavior of Al2O3/8YSZ coatings fabricated by atmospheric plasma spraying[J]. Surface and Coatings Technology,2012,206(8-9):2484-2498.
[12] ZHAO X D, ZENG K L, XIE J G, et al. Nanostructured lanthanum zirconate coating and its thermal stability properties[J]. Journal of Iron and Steel Research International,2007,14(5):147-151.
[13] LI J Y, DAI H, LI Q, et al. Lanthanum zirconate nanofibers with high sintering-resistance[J]. Materials Science and Engineering B,2006,133(1-3):209-212.
[14] CAO X, VASSEN R, FISCHER W, et al. Lanthanum-cerium oxide as a thermal barrier-coating material for high-temperature applications[J]. Advanced Materials,2003,15(17):1438-1442.
[15] FAN Q B, ZHANG F, W F C, et al. Molecular dynamics calculation of thermal expansion coefficient of a series of rare-earth zirconates[J]. Computational Materials Science,2009,46(3):716-719.
[16] LI Z P, GAO F. Bonding and hardness of LnMgAl11O19(Ln=La; Pr; Nd; Sm; Eu; Gd)[J]. Journal of Alloys and Compounds,2010,508(2):625-628.
[17] 黄亮亮,孟惠民.磁铅石结构六铝酸盐热障涂层的研究现状[J].材料工程,2013,(12):92-98. HUANG L L,MENG H M.Research status of hexaaluminate thermal barrier coatings with magnetoplumbite structure[J].Journal of Materials Engineering,2013,(12):92-98.
[18] WANG Y H, OUYANG J H, LIU Z G. Influence of dysprosium oxide doping on thermophysical properties of LaMgAl11O19 ceramics[J]. Materials & Design,2010,31(7):3353-3357.
[19] WANG Y H, OUYANG J H, LIU Z G. Preparation and thermo-physical properties of La1-xNdxMgAl11O19 (x=0, 0.1, 0.2) ceramics[J]. Journal of Alloys and Compounds,2009,485(1-2):734-738.
[20] GADOW R, LISCHKA M. Lanthanum hexaaluminate-novel thermal barrier coatings for gas turbine applications-materials and process development[J]. Surface and Coatings Technology,2002,151-152:392-399.
[21] ZHANG J F, ZHONG X H, CHENG Y L, et al. Thermal-shock resistance of LnMgAl11O19 (Ln=La, Nd, Sm, Gd) with magnetoplumbite structure[J]. Journal of Alloys and Compounds,2009,482(1-2):376-381.
[22] XIE X Y, GUO H B, GONG S K. Mechanical properties of LaTi2Al9O19 and thermal cycling behaviors of plasma-sprayed LaTi2Al9O19/YSZ thermal barrier coatings[J]. Journal of Thermal Spray Technology,2010,19(6):1179-1185.
[23] XIE X Y, GUO H B, GONG S K, et al. Lanthanum-titanium-aluminum oxide: A novel thermal barrier coating material for applications at 1300℃[J].Journal of the European Ceramic Society,2011,31(9):1677-1683.
[24] XIE X Y, GUO H B, GONG S K, et al. Hot corrosion behavior of double-ceramic-layer LaTi2Al9O19/YSZ thermal barrier coatings[J]. Chinese Journal of Aeronautics,2012,25(1):137-142.
[25] XIE X Y, GUO H B, GONG S K, et al. Thermal cycling behavior and failure mechanism of LaTi2Al9O19/YSZ thermal barrier coatings exposed to gas flame[J]. Surface and Coatings Technology,2011,205(17-18):4291-4298.
[26] XU Z H, HE L M, MU R D, et al. Double-ceramic-layer thermal barrier coatings based on La2(Zr0.7Ce0.3)2O7/La2Ce2O7 deposited by electron beam-physical vapor deposition[J]. Applied Surface Science,2010,256(11):3661-3668.
[27] WANG L, WANG Y, SUN X G, et al. Thermal shock behavior of 8YSZ and double-ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings fabricated by atmospheric plasma spraying[J]. Ceramics International,2012,38(5):3595-3606.
[28] XU Z H, HE L M, MU R, et al. Thermal cycling behavior of YSZ and La2(Zr0.7Ce0.3)2O7 as double-ceramic-layer systems EB-PVD TBCs[J]. Journal of Alloys and Compounds,2012,525:87-96.
[29] XU Z H, HE LM, MU R, et al. Double-ceramic-layer thermal barrier coatings of La2Zr2O7/YSZ deposited by electron beam-physical vapor deposition[J]. Journal of Alloys and Compounds,2009,473(1-2):509-515.
[30] XU Z H, HE S M, HE L M, et al. Novel thermal barrier coatings based on La2(Zr0.7Ce0.3)2O7/8YSZ double-ceramic-layer systems deposited by electron beam physical vapor deposition[J]. Journal of Alloys and Compounds,2011,509(11):4273-4283.
[31] CAO X Q, VASSEN R, TIETZ F, et al. New double-ceramic-layer thermal barrier coatings based on zirconia-rare earth composite oxides[J]. Journal of the European Ceramic Society,2006,26(3):247-251.
[32] MA W, DONG H G, GUO H B, et al. Thermal cycling behavior of La2Ce2O7/8YSZ double-ceramic-layer thermal barrier coatings prepared by atmospheric plasma spraying[J]. Surface and Coatings Technology,2010,204(21-22):3366-3370.
[33] KUSANO E, KITAGAWA M, SATOH A, et al. Hardness of compositionally nano-modulated TiN films[J]. Nanostructured Materials,1999,12(5-8):807-810.
[34] HERNANDEZ-LOPEZ J L, BAUER R E, CHANG W S, et al. Functional polymers as nanoscopic building blocks[J]. Materials Science and Engineering:C,2003,23(1-2):267-274.
[35] LIMA R S, KUCUK A, BERNDT C C. Integrity of nanostructured partially stabilized zirconia after plasma spray processing[J]. Materials Science and Engineering:A,2001,313(1-2):75-82.
[36] KILLINGER A, GADOW R, MAUER G, et al. Review of new developments in suspension and solution precursor thermal spray processes[J]. Journal of Thermal Spray Technology,2011,20(4):677-695.
[37] BIANCHI L, MEILLOT E. Summary of the round table on the present and future of solution and suspension thermal spraying applications[J]. Journal of Thermal Spray Technology,2012,21(6):1100-1103.
[38] FAUCHAIS P, MONTAVON G. Latest developments in suspension and liquid precursor thermal spraying[J]. Journal of Thermal Spray Technology,2010,19(1-2):226-239.
[39] FAUCHAIS P, RAT V, COUDERT J F, et al. Operating parameters for suspension and solution plasma-spray coatings[J]. Surface and Coatings Technology,2008,202(18):4309-4317.
[40] JIANG X L,LIU C B,LIN F. Overview on the development of nanostructured thermal barrier coatings[J]. Journal of Materials Science & Technology,2007,23(4):449-456.
[41] 何箐,屈轶,汪瑞军,等.DZ40M合金表面纳米和垂直裂纹结构热障涂层的抗燃气腐蚀性能[J].材料工程,2014,(5):66-72. HE Q,QU Y,WANG R J,et al.Gas hot-corrosion resistance of nanostructure and segmentation thermal barrier coatings on DZ40M superalloy[J].Journal of Materials Engineering,2014,(5):66-72.
[42] WANG N, ZHAO W X, WANG P W, et al. To develop nanostructured thermal barrier coatings[J]. Journal of Modern Physics B,2006,20(25-27):4171-4176.
[43] LIMA R S, MARPLE B R. Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: a review[J]. Journal of Thermal Spray Technology,2007,16(1):40-63.
[44] LIN X H, ZENG Y, ZHOU X M, et al. Microstructure of alumina-3wt.% titania coatings by plasma spraying with nanostructured powders[J]. Materials Science and Engineering:A,2003,357(1-2): 228-234.
[45] GELL M, JORDAN E H, SOHN Y H, et al. Development and implementation of plasma sprayed nanostructured ceramic coatings[J]. Surface and Coatings Technology,2001,146-147:48-54.
[46] LIMA R S, KUCUK A, BERNDT C C. Bimodal distribution of mechanical properties on plasma sprayed nanostructured partially stabilized zirconia[J]. Materials Science and Engineering:A,2002,327(2):224-232.
[47] GOBERMAN D, SOHN Y H, SHAW L, et al, Microstructure development of Al2O3-13wt.%TiO2 plasma sprayed coatings derived from nanocrystalline powders[J]. Acta Materialia,2002,50(5):1141-1152.
[48] LUO H, GOBERMAN D, SHAW L, et al. Indentation fracture behavior of plasma-sprayed nanostructured Al2O3-13wt.% TiO2 coatings[J]. Materials Science and Engineering:A,2003,346(1-2):237-245.
[49] BANSAL P, PADTURE N P, VASILIEV A. Improved interfacial mechanical properties of Al2O3-13wt.%TiO2 plasma-sprayed coatings derived from nanocrystalline powders[J]. Acta Materialia,2003,51(10):2959-2970.
[50] LIANG B, DING C X. Phase composition of nanostructured zirconia coatings deposited by air plasma spraying[J]. Surface and Coatings Technology,2005,191(2-3):267-273.
[51] ZHOU H, LI F, HE B, et al. Nanostructured yttria stabilized zirconia coatings deposited by air plasma spraying[J]. Transactions of Nonferrous Metals Society of China,2007,17(2):389-393.
[52] LIMA R S, MARPLE B R. Toward highly sintering-resistant nanostructured ZrO2-7wt.%Y2O3 coatings for TBC applications by employing differential sintering[J]. Journal of Thermal Spray Technology,2008,17(5-6):846-852.
[53] WANG N, ZHOU C G , GONG S K, et al. Heat treatment of nanostructured thermal barrier coating[J]. Ceramics International,2007,33(6):1075-1081.
[54] JAMALI H, MOZAFARINIA R, RAZAVI R S, et al. Fabrication and evaluation of plasma-sprayed nanostructured and conventional YSZ thermal barrier coatings[J]. Current Nanoscience,2012,8(3):402-409.
[55] GIROLAMO G D, MARRA F, BLASI C, et al. Microstructure, mechanical properties and thermal shock resistance of plasma sprayed nanostructured zirconia coatings[J]. Ceramics International,2011,37(7):2711-2717.
[56] WANG L, WANG Y, SUN X G, et al. Microstructure and indentation mechanical properties of plasma sprayed nano-bimodal and conventional ZrO2-8wt%Y2O3 thermal barrier coatings[J]. Vacuum,2012,86(8):1174-1185.
[57] WU Z L, NI L Y, YU Q H, et al. Effect of thermal exposure on mechanical properties of a plasma-sprayed nanostructured thermal barrier coating[J]. Journal of Thermal Spray Technology,2012,21(1):169-175.
[58] ZHOU C G, WANG N, WANG Z B, et al. Thermal cycling life and thermal diffusivity of a plasma-sprayed nanostructured thermal barrier coating[J]. Scripta Materialia,2004,51(10):945-948.
[59] KEYVANI A, SAREMI M, SOHI H M. An investigation on oxidation, hot corrosion and mechanical properties of plasma-sprayed conventional and nanostructured YSZ coatings[J]. Surface and Coatings Technology,2011,206(2-3):208-216.
[60] JAMALI H, MOZAFARINIA R, RAZAVI R S, et al. Comparison of thermal shock resistances of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings[J]. Ceramics International,2012,38(8):6705-6712.
[61] SUN J, ZHANG L, ZHAO D. Microstructure and thermal cycling behavior of nanostructured yttria partially stabilized zirconia (YSZ) thermal barrier coatings[J]. Journal of Rare Earths,2010,28(Suppl 1):198-201.
[62] KEYVANI A, SAREMI M, SOHI H M, et al. A comparison on thermomechanical properties of plasma-sprayed conventional and nanostructured YSZ TBC coatings in thermal cycling[J]. Journal of Alloys and Compounds,2012,541:488-494.
[63] YU Q H, RAUF A, WANG N, et al. Thermal properties of plasma-sprayed thermal barrier coating with bimodal structure[J]. Ceramics International,2011,37(3):1093-1099.
[64] LIANG B, DING C X. Thermal shock resistances of nanostructured and conventional zirconia coatings deposited by atmospheric plasma spraying[J]. Surface and Coatings Technology,2005,197(2-3):185-192.
[65] ZHOU C G, WANG N, XU H B. Comparison of thermal cycling behavior of plasma-sprayed nanostructured and traditional thermal barrier coatings[J]. Materials Science and Engineering: A,2007,452-453:569-574.
[66] ABBAS M, GUOH B, SHAHID M R. Comparative study on effect of oxide thickness on stress distribution of traditional and nanostructured zirconia coating systems[J]. Ceramics International,2013,39(1):475-481.
[67] WANG X Y, ZHU Y P, DU L Z, et al. The study on porosity and thermophysical properties of nanostructured La2Zr2O7 coatings[J]. Applied Surface Science,2011,257(21):8945-8949.
[68] GONG W B, SHA C K, SUN D Q, et al. Microstructures and thermal insulation capability of plasma-sprayed nanostructured ceria stabilized zirconia coatings[J]. Surface and Coatings Technology,2006,201(6):3109-3115.
[69] YU Q H, RAUF A, ZHOU C G. Microstructure and thermal properties of nanostructured 4wt.%Al2O3-YSZ coatings produced by atmospheric plasma spraying[J]. Journal of Thermal Spray Technology,2010,19(6):1294-1300.
[70] YU Q H, ZHOU C G, ZHANG H Y, et al. Thermal stability of nanostructured 13wt%Al2O3-8 wt% Y2O3-ZrO2 thermal barrier coatings[J]. Journal of the European Ceramic Society,2010,30(4):889-897.
[71] CHEN H, HAO Y F, WANG H Y, et al. Analysis of the microstructure and thermal shock resistance of laser glazed nanostructured zirconia TBCs[J].Journal of Thermal Spray Technology,2010,19(3):558-565.
[72] CHEN D Y, JORDAN E H, GELL M. Effect of solution concentration on splat formation and coating microstructure using the solution precursor plasma spray process[J]. Surface and Coatings Technology,2008,202(10):2132-2138.
[73] MA X Q, ROTH J, XIAO T D, et al. Solution precursor plasma spray: a promising new technique for forming functional nanostructured films and coatings[J].Ceramic Engineering and Science Proceedings,2008,25(4):381-387.
[74] JORDAN E H, XIE L D, GELL M, et al. Superior thermal barrier coatings using solution precursor plasma spray[J]. Journal of Thermal Spray Technology,2004,13(1):57-65.
[75] XIE L D, MA X Q, JORDAN E H, et al. Deposition mechanisms of thermal barrier coatings in the solution precursor plasma spray process[J]. Surface and Coatings Technology,2004,177-178:103-107.
[76] XIE L D, MA X Q, JORDAN E H, et al. Identification of coating deposition mechanisms in the solution-precursor plasma-spray process using model spray experiments[J]. Materials Science and Engineering:A,2003,362(1-2):204-212.
[77] BHATIA T, OZTURK A, XIE L D, et al. Mechanisms of ceramic coating deposition in solution-precursor plasma spray[J]. Journal of Materials Research,2002,17(9):2363-2372.
[78] XIE L D, MA X Q, ALPER O, et al. Processing parameter effects on solution precursor plasma spray process spray patterns[J]. Surface and Coatings Technology,2004,183(1):51-61.
[79] GELL M, XIE L D, MA X Q, et al. Highly durable thermal barrier coatings made by the solution precursor plasma spray process[J]. Surface and Coatings Technology,2004,177-178:97-102.
[80] XIE L D, JORDAN E H, PADTURE N P, et al. Phase and microstructural stability of solution precursor plasma sprayed thermal barrier coatings[J]. Materials Science and Engineering:A,2004,381(1-2):189-196.
[81] CHEN D Y, GELL M, JORDAN E H, et al. Thermal stability of air plasma spray and solution precursor plasma spray thermal barrier coatings[J]. Journal of the American Ceramic Society,2007,90(10):3160-3166.
[82] PADTURE N P, SCHLICHTING K W, BHATIA T, et al. Towards durable thermal barrier coatings with novel microstructures deposited by solution-precursor plasma spray[J].Acta Materialia,2001,49(12):2251-2257.
[83] JADHAV A, PADTURE N P, WU F, et al. Thick ceramic thermal barrier coatings with high durability deposited using solution-precursor plasma spray[J]. Materials Science and Engineering:A,2005,405(1-2):313-320.
[84] XIE L D, CHEN D Y, JORDAN E H, et al. Formation of vertical cracks in solution-precursor plasma-sprayed thermal barrier coatings[J]. Surface and Coatings Technology,2006,201(3-4):1058-1064.
[85] GELL M, XIE L D, JORDAN E H, et al. Mechanisms of spallation of solution precursor plasma spray thermal barrier coatings[J]. Surface and Coatings Technology,2004,188-189:101-106.
[86] WU F, JORDAN E H, MA X, et al. Thermally grown oxide growth behavior and spallation lives of solution precursor plasma spray thermal barrier coatings[J]. Surface and Coatings Technology,2008,202(9):1628-1635.
[87] PAWLOWSKI L. Finely grained nanometric and submicrometric coatings by thermal spraying: a review[J]. Surface and Coatings Technology,2008,202(18):4318-4328.
[88] KOZERSKI S,ATKA L, PAWLOWSKI L, et al. Preliminary study on suspension plasma sprayed ZrO2 + 8wt.% Y2O3 coatings[J]. Journal of the European Ceramic Society,2011,31(12):2089-2098.
[89] PAWLOWSKI L. Suspension and solution thermal spray coatings[J]. Surface and Coatings Technology,2009,203(19):2807-2829.
[90] BASU S, JORDAN E H, CETEGEN B M. Fluid mechanics and heat transfer of liquid precursor droplets injected into high-temperature plasmas[J]. Journal of Thermal Spray Technology,2008,17(1):60-72.
[91] MA X Q, WU F, ROTH J, et al. Low thermal conductivity thermal barrier coating deposited by the solution plasma spray process[J]. Surface and Coatings Technology,2006,201(7): 4447-4452.
[92] CARPIO P, RAYN E, PAWOWSKI L, et al. Microstructure and indentation mechanical properties of YSZ nanostructured coatings obtained by suspension plasma spraying[J]. Surface and Coatings Technology,2013,220:237-243.
[93] WALDBILLIG D, KESLER O. Effect of suspension plasma spraying process parameters on YSZ coating microstructure and permeability[J]. Surface and Coatings Technology,2011,205(23-24):5483-5492.
[94] TINGAUD O, BERTRAND P, BERTRAND G. Microstructure and tribological behavior of suspension plasma sprayed Al2O3 and Al2O3-YSZ composite coatings[J]. Surface and Coatings Technology,2010,205(4):1004-1008.
[95] VANEVERY K, KRANE M J, TRICE R W. Parametric study of suspension plasma spray processing parameters on coating microstructures manufactured from nanoscale yttria-stabilized zirconia[J]. Surface and Coatings Technology,2012,206(8-9): 2464-2473.
[96] VAβEN R, KAβNER H, MAUER G, et al. Suspension plasma spraying: process characteristics and applications[J]. Journal of Thermal Spray Technology,2010,19(1-2):219-225.
[97] STUKE A, KASSNER H, MARQUS J L, et al. Suspension and air plasma-sprayed ceramic thermal barrier coatings with high infrared reflectance[J]. International Journal of Applied Ceramic Technology,2012,9(3):561-574.
[98] GUIGNARD A, MAUER G, VAβEN R, et al. Deposition and characteristics of submicrometer-structured thermal barrier coatings by suspension plasma spraying[J]. Journal of Thermal Spray Technology,2012,21(3-4):416-424.
[99] TARASI F, MEDRAJ M, DOLATABADI A, et al. Phase formation and transformation in alumina/YSZ nanocomposite coating deposited by suspension plasma spray process[J]. Journal of Thermal Spray Technology,2010,19(4):787-795.
[100] TARASI F, MEDRAJ M, DOLATABADI A et al. Enhancement of amorphous phase formation in alumina-YSZ coatings deposited by suspension plasma spray process[J]. Surface and Coatings Technology,2013,220:191-198.
[101] TARASI F, MEDRAJ M, DOLATABADI A, et al. Amorphous and crystalline phase formation during suspension plasma spraying of the alumina-zirconia composite[J]. Journal of the European Ceramic Society,2011,31(5):2903-2913.
[102] CHEN D Y, JORDAN E H, GELL M. Suspension plasma sprayed composite coating using amorphous powder feedstock[J]. Applied Surface Science,2009,255(11):5935-5938.
[103] BERGHAUS J O, MARPLE B R. High velocity oxy-fuel (HVOF) suspension spraying of mullite[J]. Journal of Thermal Spray Technology,2008,17(5-6):671-678.
[104] GADOW R, KILLINGER A, RAUCH J. New results in high velocity suspension flame spraying (HVSFS)[J]. Surface and Coatings Technology,2008,202(18):4329-4336.
[1] 查柏林, 高双林, 乔素磊, 黄定园, 袁小阳, 林浩. 超音速火焰喷涂参数及粉末粒度对WC-12Co涂层弹性模量的影响[J]. 材料工程, 2015, 43(4): 92-97.
[2] 杨杰, 安宇龙, 赵晓琴, 陈杰, 周惠娣, 陈建敏. 铝青铜聚酯封严涂层的制备和可磨耗性能评价[J]. 材料工程, 2014, 0(9): 8-13.
[3] 齐红宇, 马立强, 李少林, 杨晓光, 王亚梅, 魏洪亮. 等离子热障涂层构件高温热疲劳寿命预测研究[J]. 材料工程, 2014, 0(7): 67-72.
[4] 董建民, 李嘉荣, 牟仁德, 赵金乾, 史振学, 刘世忠. 高温热处理对带热障涂层DD6单晶高温合金互扩散行为及持久断裂特征的影响[J]. 材料工程, 2014, 0(6): 51-55.
[5] 张小锋, 于磊, 杨震晓, 邓春明. 大气等离子喷涂制备低氧含量厚钨涂层[J]. 材料工程, 2014, 0(5): 23-28.
[6] 何箐, 屈轶, 汪瑞军, 王伟平. DZ40M合金表面纳米和垂直裂纹结构热障涂层的抗燃气热腐蚀性能[J]. 材料工程, 2014, 0(5): 66-72.
[7] 马志远, 罗忠兵, 林莉. 基于RVM表征热障涂层孔隙率与孔隙形貌对超声纵波声速的影响[J]. 材料工程, 2014, 0(5): 86-90.
[8] 何箐, 吴鹏, 屈轶, 汪瑞军, 王伟平. 一种新型CMAS耦合条件下热障涂层热循环实验方法[J]. 材料工程, 2014, 0(12): 92-98.
[9] 周轶群, 佟文伟, 刘芳, 张开阔. 热障涂层对K417G合金高温低周疲劳行为的影响[J]. 材料工程, 2014, 0(1): 19-23.
[10] 甄文柱, 梁波. 等离子喷涂MoS2/Cu基复合涂层真空摩擦磨损性能[J]. 材料工程, 2013, 0(8): 16-22.
[11] 黄亮亮, 孟惠民, 陈龙. 磁铅石结构六铝酸盐热障涂层的研究现状[J]. 材料工程, 2013, 0(12): 92-99.
[12] 张志强, 李国禄, 王海斗, 徐滨士, 朴钟宇. 等离子喷涂Fe基合金涂层组织及接触疲劳损伤性能的研究[J]. 材料工程, 2012, 0(6): 59-62.
[13] 易德亮, 冶银平, 刘光, 尹斌, 周惠娣, 陈建敏. 等离子喷涂Al2O3-30%TiO2微米/纳米复合涂层的结构与耐磨性能[J]. 材料工程, 2012, 0(5): 24-29.
[14] 王韶云, 李国禄, 王海斗, 刘金海, 徐滨士, 朴钟宇. 微缺陷对热喷涂涂层接触疲劳性能的影响[J]. 材料工程, 2012, 0(2): 72-76.
[15] 蔡妍, 易军, 陆峰, 陶春虎. 热障涂层金属元素扩散阻挡层研究进展[J]. 材料工程, 2011, 0(9): 92-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn