Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (9): 26-31    DOI: 10.11868/j.issn.1001-4381.2014.09.005
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
TC4钛合金与YG8硬质合金高频感应钎焊组织及性能研究
邵长斌1,2, 熊江涛2, 孙福2, 张赋升2, 李京龙2
1. 西北工业大学 凝固技术国家重点实验室, 西安 710072;
2. 西北工业大学 摩擦焊接陕西省重点实验室, 西安 710072
Microstructure and Property of High-frequency Induction Brazed Joints of Titanium Alloy TC4 and Cemented Carbide YG8
SHAO Chang-bin1,2, XIONG Jiang-tao2, SUN-Fu2, ZHANG Fu-sheng2, LI Jing-long2
1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China;
2. Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(3294 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 在钎焊温度920~970℃和钎焊保温时间20s条件下,采用B-Cu64MnNi钎料对TC4钛合金与YG8硬质合金进行真空高频感应钎焊实验。利用扫描电镜(SEM)、能谱分析(EDS)及X射线衍射分析(XRD)对钎焊接头的显微组织、成分分布和相结构进行了研究,测试了接头的抗拉强度并观察分析了断口形貌及其元素分布。结果表明,钎焊温度为920~940℃时TC4与YG8钎焊接头显微结构为:TC4/β-Ti/TiCu+Ti3Cu4+TiMn+Cu(Mn,Ni)/YG8,钎缝呈镶嵌结构;随钎焊温度升高,脆性片状组织TiMn增多,镶嵌结构破坏,接头性能明显降低;钎焊温度为930℃时,获得的接头抗拉强度最高,为206MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邵长斌
熊江涛
孙福
张赋升
李京龙
关键词 高频感应钎焊YG8TC4显微组织    
Abstract:High-frequency induction brazing in vacuum was carried out between titanium alloy TC4 and cemented carbide YG8 by using copper based brazing filler metal B-Cu64MnNi at 920-970℃ for holding time of 20s. The microstructure, elements distribution and the phases of the joint were analyzed by SEM, EDS and XRD. The tensile strength of the joints was tested. The fracture surface morphologies and elements distribution were analyzed. The results indicate that the interface structure of the joints is composed of TC4/β-Ti/TiCu+Ti3Cu4+TiMn+Cu(Mn, Ni)/YG8, which shows an embedded structure when the temperature changes from 920℃ to 940℃. As the brazing temperature increases, the embedded structure is thus destroyed due to the overgrown brittle TiMn intermetallics, which also leads to the degradation of the mechanical properties. The maximum tensile strength of 206MPa is achieved at 930℃.
Key wordshigh-frequency induction brazing    YG8    TC4    microstructure
收稿日期: 2013-07-02     
1:  TG454  
基金资助:国家自然科学基金资助项目(51071123,51101126);凝固技术国家重点实验室(西北工业大学)自主研究课题资助项目(43-QP-2009,31-TP-2009)
通讯作者: 熊江涛(1974- ),男,副教授,主要从事扩散焊、摩擦焊与钎焊等焊接技术及理论,焊接界面演变热力学等研究     E-mail: xiongjiangtao@nwpu.edu.cn
引用本文:   
邵长斌, 熊江涛, 孙福, 张赋升, 李京龙. TC4钛合金与YG8硬质合金高频感应钎焊组织及性能研究[J]. 材料工程, 2014, 0(9): 26-31.
SHAO Chang-bin, XIONG Jiang-tao, SUN-Fu, ZHANG Fu-sheng, LI Jing-long. Microstructure and Property of High-frequency Induction Brazed Joints of Titanium Alloy TC4 and Cemented Carbide YG8. Journal of Materials Engineering, 2014, 0(9): 26-31.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2014.09.005      或      http://jme.biam.ac.cn/jme/CN/Y2014/V0/I9/26
[1] 秦优琼,于治水. 钎焊工艺参数对C/C复合材料/Cu/Mo/TC4钎焊接头微观组织的影响[J]. 材料工程, 2012, (8): 78-82. QIN Y Q,YU Z S. Effects of brazing parameters on microstructures of C/C composite/Cu/Mo/TC4 brazed joints[J]. Journal of Materials Engineering, 2012, (8): 78-82.
[2] SHAMANIAN M, SALEHI M, SAATCHI A, et al. Influence of Ni interlayers on the mechanical properties of Ti6Al4V/(WC-Co) friction welds[J]. Materials and Manufacturing Processes, 2003, 18(4): 581-598.
[3] BARRENA M I, GOMEZ De SALAZAR J M, MERINO N, et al. Characterization of WC-Co/Ti6Al4V diffusion bonding joints using Ag as interlayer[J]. Materials Characterization, 2008, 59(10): 1407-1411.
[4] ROGER R, WELSCH G, COLLING E W. Materials Properties Handbook: Titanium Alloy[M].USA:ASM International, Materials Park, 2007. 483-488.
[5] GUO Z X, XIONG J. Effect of Mo2C on the microstructure and properties of WC-TiC-Ni cemented carbide[J]. Int J Refract Met Hard Mater, 2008, 26(6): 601-605.
[6] XU P Q. Dissimilar welding of WC-Co cemented carbide to Ni42-Fe50.9C0.6Mn3.5Nb3 invar alloy by laser-tungsten inert gas hybrid welding[J]. Materials and Design, 2011, 32(1): 229-237.
[7] 李鹏,李京龙,熊江涛,等. 添加Ni+Nb中间层的钛合金与不锈钢扩散工艺研究[J]. 航空材料学报, 2011, 31(3): 46-51.LI P, LI J L, XIONG J T, et al. Study on diffusion bonded titanium alloy to stainless steel with Ni+Nb interlayers[J]. Journal of Aeronautical Materials, 2011, 31(3): 46-51.
[8] 王艳芳. 硬质合金与钛合金真空扩散焊工艺研究[J]. 焊接技术, 2007, 136(5): 11-13.WANG Y F. Diffusion bonding of hardmetal and titanium alloy[J]. Welding Technology, 2007, 136(5): 11-13.
[9] NOWACKI J, KAWIAK M. Deformability of WC-Co sinters and 17-4 PH steel brazed joints[J]. Engineering Structures, 2012, 157-158(20): 177-191.
[10] PAN L, CHEN F, TAO J, et al. Study on brazing WC/CuMnNi coating on 45 steel[J]. Acta Materiae Compositae Sinica, 2002,19(4): 114-117.
[11] BLACKWELL B E. A framework for determining the mechanical properties of dissimilar material joints[D]. USA: Massachusetts Institute of Technology, 1996.
[12] 赵贺,曹健,冯吉才. TC4/Cu/ZQSn10-2-3 扩散连接接头微观分析[J]. 焊接学报, 2009, 30(7):37-40. ZHAO H, CAO J, FENG J C. Microstructural characterization of TC4/Cu/ZQSn10-2-3 diffusion bonded joints[J]. Transactions of the China Welding Institution, 2009, 30(7): 37-40.
[13] YUE X, HE P, FENG J C, et al. Microstructure and interfacial reactions of vacuum brazing titanium alloy to stainless steel using an AgCuTi filler metal[J]. Materials Characterization, 2008, 59(12): 1721-1727.
[14] 熊进辉,黄继华,张华,等. Cf/SiC 复合材料与Ti合金的Ag-Cu-Ti-TiC复合钎焊[J]. 中国有色金属学报, 2009, 19(6): 1038-1043. XIONG J H, HUANG J H, ZHANG H, et al. Brazing of Cf/SiC composite to Ti alloy using Ag-Cu-Ti-TiC composite filler materials[J]. The Chinese Journal of Nonferrous Metals, 2009,19(6): 1038-1043.
[15] YANG J, WU A P, ZOU G S, et al. Solid-liquid state bonding of Si3N4 ceramics with ceramic-modified brazing alloy[J]. Tsinghua Science and Technology, 2004, 9(5): 601-606.
[1] 杨闯, 彭晓东, 刘静, 马亚芹, 王华. TC4钛合金低压真空氮化改性层的制备与性能[J]. 材料工程, 2015, 43(3): 78-82.
[2] 雷玉成, 龚晨诚, 罗雅, 肖波, 朱强. 激励电流对MGH956合金原位合金化TIG焊接头性能的影响[J]. 材料工程, 2015, 43(2): 7-13.
[3] 冯广杰, 李卓然, 朱洪羽, 徐慨. SiC陶瓷真空钎焊接头显微组织和性能[J]. 材料工程, 2015, 43(1): 1-5.
[4] 张盼, 叶凌英, 顾刚, 蒋海春, 张新明. 5A90铝锂合金超塑性变形的组织演变及变形机理[J]. 材料工程, 2014, 0(9): 51-56.
[5] 王智慧, 万国力, 贺定勇, 蒋建敏, 崔丽. Fe-Cr-B-C堆焊合金的组织与耐磨性[J]. 材料工程, 2014, 0(9): 57-62.
[6] 郑漫庆, 王高潮, 徐雪峰, 喻淼真. TC4-DT合金的超塑性变形及其本构方程[J]. 材料工程, 2014, 0(9): 63-67.
[7] 郑漫庆, 王高潮, 喻淼真, 徐雪峰. 应变速率循环法构建TC4-DT钛合金本构方程[J]. 材料工程, 2014, 0(8): 32-35.
[8] 周静怡, 赵文侠, 郑真, 曲士昱, 贾新云, 郑运荣. 硼含量对IC10高温合金凝固行为的影响[J]. 材料工程, 2014, 0(8): 90-96.
[9] 初雅杰, 李晓泉, 吴申庆, 徐振钦, 杜舜尧. 热压形变参数对AZ31镁合金接头微观组织和力学性能的影响[J]. 材料工程, 2014, 0(6): 35-39.
[10] 田俊, 薛顺, 吴铖川, 成国光, 周国治, 王文虎, 盛伟. 弹簧钢热处理前后显微组织对抗腐蚀性能的影响[J]. 材料工程, 2014, 0(4): 18-25.
[11] 王少华, 马志锋, 张显峰, 孙刚, 冯朝辉, 李伟, 陆政. Al-Zn-Mg-Cu-Zr-0.5Er合金型材组织性能研究[J]. 材料工程, 2014, 0(3): 27-33.
[12] 马秀萍, 李超. 铸造过热度和热处理对CoCrMo合金显微组织的影响[J]. 材料工程, 2014, 0(3): 66-70.
[13] 程秀, 胡树兵, 宋武林, 李振. 球墨铸铁的等离子束表面强化研究[J]. 材料工程, 2014, 0(1): 12-18.
[14] 耿波, 张路, 范念青, 夏志新, 刘江南. 水蒸气温度和流量对T91钢氧化行为的影响[J]. 材料工程, 2014, 0(1): 52-57.
[15] 卢金文, 葛鹏, 赵永庆. Mo对Ti-Mo系合金显微组织的影响及其强化效应[J]. 材料工程, 2013, 0(9): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn