Influence of Nano-alumina Particles on Glass Transition Temperature of High-performance Epoxy Resin
ZHANG Zong-hua1, LIU Gang2, ZHANG Hui3, ZHANG Zhong3, WANG Xiao-qun1
1. Materials Science & Engineering School, Beihang University, Beijing 100191, China;
2. Science and Technology on Advanced Composites Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China;
3. National Center for Nanoscience and Technology, Beijing 100190, China
Abstract:Alumina/epoxy composites were prepared by mechanical mixing technique. The effect of filler content and surface modification of the nano-alumina on the glass transition temperature (Tg) of epoxy composites was investigated. The result shows that the addition of micron-sized alumina particles does not change the Tg of epoxy polymer, but the unmodified nano-alumina affects the Tg of epoxy composites. There is a significant drop in Tg of the epoxy samples when the filler content is above 10% (mass fraction). At the filler content of 18%, the Tg of the nanocomposite sample declines by as much as 25℃ in comparison with that of the neat epoxy sample. Comparatively, the surface-modified nanoparticles have better compatibility with epoxy resin than the un-modified ones, and thus showing minor thickening effect.
[1] WETZEL B, HAUPERT F, ZHANG Qiu-ming. Epoxy nanocomposites with high mechanical and tribological performance[J]. Composites Science and Technology, 2003, 63(14): 2055-2067.
[2] 王德中. 环氧树脂生产与应用[M]. 北京:化学工业出版社, 2001.WANG De-zhong. Production and Application of Epoxy Resin[M]. Beijing: Chemical Industry Press, 2001.
[3] RAGOSTA G, ABBATE M, MUSTO P, et al. Epoxy-silica particulate nanocomposites:chemical interactions,reinforcement and fracture toughness[J]. Polymer, 2005, 46(23): 10506-10516.
[4] 孙曼灵. 环氧树脂应用原理与技术[M]. 北京:机械工业出版社, 2002.SUN Man-ling. Application of the Principles and Techniques of Epoxy Resin[M]. Beijing: China Machine Press, 2002.
[5] 张小华,徐伟箭. 无机纳米粒子在环氧树脂增韧改性中的应用[J]. 高分子通报,2005, (12):100-104.ZHANG Xiao-hua, XU Wei-jian. Application of inorganic nano-particles in epoxy resin toughening [J]. Polymer Bulletin,2005, (12):100-104.
[6] 李仙会,胡晓丹,陈瑞珠. 环氧树脂改性研究进展[J]. 热固性树脂, 2003, 18(3): 27-31.LI Xian-hui, HU Xiao-dan, CHEN Rui-zhu. Recent progress in modification of epoxy resin[J]. Thermosetting Resin, 2003, 18(3): 27-31.
[7] MA J, MO M-S, DU X-S, et al. Effect of inorganic nanoparticles on mechanical property, fracture toughness and toughening mechanism of two epoxy systems[J]. Polymer, 2008, 49(16): 3510-3523.
[8] KANG S, HONG S I, CHOE C-R, et al. Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process[J]. Polymer, 2001, 42(3): 879-887.
[9] WETZEL B, ROSSO P, HAUPERT F, et al. Epoxy nanocomposites-fracture and toughening mechanisms[J]. Engineering Fracture Mechanics, 2006, 73(16): 2375-2398.
[10] ASH B J, SCHADLER L S, SIEGEL R W. Glass transition behavior of alumina/polymethylmethacrylate nanocomposites[J]. Materials Letters, 2002, 55(1): 83-87.
[11] MIYAGAWA H, RICH M J, DRZAL L T. Thermo-physical properties of epoxy nanocomposites reinforced by carbon nanotubes and vapor grown carbon fibers[J]. Thermochimica Acta, 2006, 442(1-2): 67-73.
[12] SUN Y, ZHANG Z, MOON K-S, et al. Glass transition and relaxation behavior of epoxy nanocomposites[J]. Journal of Polymer Science Part B: Polymer Physics, 2004, 42(21): 3849-3858.
[13] PETHRICK R A, MILLER C, RHONEY I. Influence of nanosilica particles on the cure and physical properties of an epoxy thermoset resin[J]. Polymer International, 2010, 59(2): 236-241.
[14] HAN J T, CHO K. Nanoparticle-induced enhancement in fracture toughness of highly loaded epoxy composites over a wide temperature range[J]. Journal of Materials Science, 2006, 41(13): 4239-4245.
[15] ZHAO H, LI R K Y. Effect of water absorption on the mechanical and dielectric properties of nano-alumina filled epoxy nanocomposites[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(4): 602-611.
[16] BARRAU S, DEMONT P, MARAVAL C, et al. Glass transition temperature depression at the percolation threshold in carbon nanotube-epoxy resin and polypyrrole-epoxy resin composites[J]. Macromolecular Rapid Communications, 2005, 26(5): 390-394.
[17] ZHANG G, RASHEVA Z, KARGER-KOCSIS J, et al. Synergetic role of nanoparticles and micro-scale short carbon fibers on the mechanical profiles of epoxy resin[J]. Exp Polym Lett, 2011, 5(10):859-872.
[18] LIU G, ZHANG H, ZHANG D J, et al. On depression of glass transition temperature of epoxy nanocomposites[J]. Journal of Materials Science, 2012, 47(19):6891-6895.