Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (9): 63-67    DOI: 10.11868/j.issn.1001-4381.2014.09.011
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
TC4-DT合金的超塑性变形及其本构方程
郑漫庆, 王高潮, 徐雪峰, 喻淼真
南昌航空大学 航空制造工程学院, 南昌 330063
Superplastic Deformation and Constitutive Equations of TC4-DT Alloy
ZHENG Man-qing, WANG Gao-chao, XU Xue-feng, YU Miao-zhen
School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China
全文: PDF(1731 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用CMT4104电子万能拉伸试验机分别进行温度为870℃,应变速率为3.3×10-4s-1的恒应变速率和温度为850~890℃,应变速率为3.3×10-5~3.3×10-3s-1的应变速率循环法超塑性拉伸实验。结果表明:在变形过程中存在动态回复与动态再结晶现象,并采用Avrami方程描述了动态再结晶动力学行为;基于应变速率循环法获得了TC4-DT合金的本构模型,再通过1stopt软件加以回归拟合,得到较为精确的TC4-DT合金超塑性变形本构方程。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑漫庆
王高潮
徐雪峰
喻淼真
关键词 TC4-DT合金动态再结晶超塑性变形    
Abstract:Superplastic deformation tests of TC4-DT alloy were performed with a superplastic tensile testing machine CMT4104. The constant strain rate method and the strain rate circulation method were used. In the constant strain rate test, the strain rate was fixed at 3.3×10-4 s-1 and the temperature was fixed at 870℃; in the strain rate circulation test, the strain rates were tuned from 3.3×10-5s-1 to 3.3×10-3s-1 and the temperature was from 850℃ to 890℃ respectively. The results show that dynamic recovery and dynamic recrystallization occur during the superplastic deformation and the dynamic recrystallization kinetics behavior can be described by Avrami equation. The experimental results of the strain rate circulation method were used to establish the constitutive relationship of the TC4-DT alloy. Regression analysis was carried out with the 1stopt software and a precise constitutive equation for superplastic deformation of the TC4-DT alloy is obtained.
Key wordsTC4-DT alloy    dynamic recrystallization    superplastic deformation
收稿日期: 2013-09-16      出版日期: 2014-09-20
中图分类号:  TG146.2+3  
基金资助:国家自然科学基金资助项目(51075196);江西省教育厅基金(GJJ12451)
通讯作者: 王高潮(1956- ),男,教授,主要从事航空复杂构件精密成形的研究,联系地址:南昌航空大学航空制造工程学院(330063)     E-mail: Wanggaochao@nchu.edu.cn
引用本文:   
郑漫庆, 王高潮, 徐雪峰, 喻淼真. TC4-DT合金的超塑性变形及其本构方程[J]. 材料工程, 2014, 0(9): 63-67.
ZHENG Man-qing, WANG Gao-chao, XU Xue-feng, YU Miao-zhen. Superplastic Deformation and Constitutive Equations of TC4-DT Alloy. Journal of Materials Engineering, 2014, 0(9): 63-67.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.09.011      或      http://jme.biam.ac.cn/CN/Y2014/V0/I9/63
[1] 曹春晓. 选材判据的变化与高损伤容限钛合金的发展[J]. 金属学报, 2002, 38(增刊): 4-11.CAO C X. Change of material selection criterion and development of high damage-tolerant titanium alloy[J]. Acta Metallurgica Sinica, 2002, 38(Suppl): 4-11.
[2] SINHA V, SOBOYEJOW W O. An investigation of the effects of colony microstructure on fatigue crack growth in Ti-6Al-4V[J]. Materials Science and Engineering:A, 2001,319-321: 607-612.
[3] 李辉, 曲恒磊, 赵永庆, 等.显微组织对Ti-6Al-4VELI合金疲劳裂纹扩展速率的影响[J]. 稀有金属快报, 2006, 25(3): 26-29.LI H, QU H L, ZHAO Y Q, et al.Effects of microstructure on fatigue crack growth rate of damage tolerance for TC4-DT alloy[J]. Rare Metals Letters, 2006, 25(3): 26-29.
[4] SWIFT T. Damage tolerance capability[J]. International Journal of Fatigue, 1994, 16(1): 75-96.
[5] ARRIETA A J, STRIZ A G. Optimal design of aircraft structures with damage tolerance requirements[J]. Struct Multidisc Optim, 2005, 30(2):155-163.
[6] 陈学海, 陈康华, 董朋轩,等.7085铝合金的热变形组织演变及动态再结晶模型[J].中国有色金属学报, 2013, 23(1):44-50.CHEN X H, CHEN K H, DONG P X, et al. Microstructure evolution and dynamic recrystallization model of 7085 aluminum alloy during hot deformation[J]. The Chinese Journal of Nonferrous Metals,2013, 23(1):44-50.
[7] YANG J H, LIU Q Y, SUN D B, et al. Recrystallization behavior of deformed austenite in high strength microalloyed pipeline steel[J]. Journal of Iron and Steel Research, International, 2009, 16(1): 75-80.
[8] 王智祥, 刘雪峰, 谢建新.AZ91镁合金高温变形本构关系[J]. 金属学报, 2008, 44(11): 1378-1383.WANG Z X, LIU X F, XIE J X. Constitutive relationship of hot deformation of AZ91 magnesium alloy[J]. Acta Metallurgica Sinica, 2008, 44(11): 1378-1383.
[9] 喻淼真, 王高潮, 郑漫庆, 等. TC4-DT合金应变诱发最大m值超塑性变形研究[J]. 航空材料学报, 2014, 34(3): 15-20.YU M Z, WANG G C, ZHENG M Q, et al. Superplastic deformation based on strain-induced and maximal m value in TC4-DT titanium alloy [J]. Journal of Aeronautical Materials, 2014, 34(3): 15-20.
[10] 喻淼真, 王高潮, 郑漫庆, 等. TC4-DT合金改锻工艺及超塑性变形行为[J]. 塑性工程学报, 2013, 20(5): 1-6. YU M Z, WANG G C, ZHENG M Q, et al. Forging pretreatment process and superplastic deformation behavior of TC4-DT alloy [J]. Journal of Plasticity Engineering, 2013, 20(5): 1-6.
[11] 张庭芳. 镁合金板料热拉深成形实验与数值模拟研究[D].南昌:南昌大学,2008. ZHANG T F. Study on experiment and numerical simulation of magnesium alloy sheet metal warm deep drawing[D]. Nanchang: Nanchang University,2008.
[12] 刘智恩. 材料科学基础[M].西安:西北工业大学出版社,2008. 273-274. LIU Z E. Material Science[M].Xi'an: Northwestern Polytechnical University Press, 2008. 273-274.
[13] LIN Y C, CHEN M S. Numerical simulation and experimental verification of microstructure evolution in a three-dimensional hot upsetting process[J]. Journal of Materials Processing Technology, 2009, 209(9): 4578-4583.
[14] 范定兵, 王高潮, 赵晓宾. Ti-15-3超塑性研究[J]. 南昌航空工业学院学报:自然科学版, 2007, 21(1): 26-29. FAN D B, WANG G C, ZHAO X B. Research on superplasticity of Ti-15-3 titanium alloy[J]. Journal of Nanchang Institute of Aeronautical Technology:Natural Science Edition, 2007, 21(1): 26-29.
[15] 耿启东, 王高潮, 董洪波. TA15合金应变速率循环超塑性研究[J]. 热加工工艺, 2008,37(11): 43-48. GENG Q D, WANG G C, DONG H B. Superplasticity of TA15 titanium alloy induced by strain rate cycling[J].Hot Working Technology,2008, 37(11): 43-48.
[1] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[2] 朱鸿昌, 罗军明, 朱知寿. TB17钛合金β相区动态再结晶行为及转变机理[J]. 材料工程, 2020, 48(2): 108-113.
[3] 甘洪岩, 程明, 宋鸿武, 陈岩, 张士宏, Vladimir Petrenko. GH4169合金楔横轧加工过程中动态再结晶及织构演变[J]. 材料工程, 2020, 48(2): 114-122.
[4] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[5] 魏帅虎, 胡茂良, 吉泽升, 许红雨, 王晔. 多道次热挤压制备Al2O3/AZ31复合材料的微观组织与力学性能[J]. 材料工程, 2019, 47(12): 85-91.
[6] 朱怀沈, 聂义宏, 赵帅, 王宝忠. 镍基617合金动态再结晶微观组织演变与预测[J]. 材料工程, 2018, 46(6): 80-87.
[7] 马琳, 李伟, 白娇娇, 赵丰停. 粉末冶金Ti-14Mo-2.1Ta-0.9Nb-7Zr合金热变形行为[J]. 材料工程, 2018, 46(10): 47-54.
[8] 杨志强, 刘正东, 何西扣, 刘宁. 反应堆压力容器用SA508Gr.4N钢的热变形行为[J]. 材料工程, 2017, 45(8): 88-95.
[9] 张坤, 臧金鑫, 陈军洲, 伊琳娜, 汝继刚, 康唯. 新型Al-Zn-Mg-Cu合金热变形组织演化[J]. 材料工程, 2017, 45(1): 14-19.
[10] 袁武华, 龚雪辉, 孙永庆, 梁剑雄. 0Cr16Ni5Mo低碳马氏体不锈钢的热变形行为及其热加工图[J]. 材料工程, 2016, 44(5): 8-14.
[11] 谢俊峰, 朱有利, 黄元林, 白昶. 2A12与2A11铝合金超声波焊接工艺与组织研究[J]. 材料工程, 2015, 43(3): 54-59.
[12] 马江南, 杨才福, 王瑞珍. 微合金钢回温变形时的组织转变和铁素体动态再结晶行为[J]. 材料工程, 2015, 43(11): 24-31.
[13] 郑漫庆, 王高潮, 喻淼真, 徐雪峰. 应变速率循环法构建TC4-DT钛合金本构方程[J]. 材料工程, 2014, 0(8): 32-35.
[14] 邬小萍, 李德富, 郭胜利, 许晓庆, 胡捷, 贺金宇. ZnAl10Cu2合金在热变形过程中的球化及动态再结晶[J]. 材料工程, 2014, 0(12): 72-78.
[15] 俞秋景, 张伟红, 于连旭, 刘芳, 孙文儒, 胡壮麒. 铸态Inconel 625合金热加工图的建立及热变形机制分析[J]. 材料工程, 2014, 0(1): 30-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn