Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (9): 76-82    DOI: 10.11868/j.issn.1001-4381.2014.09.013
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
原料尺寸对氧化石墨与石墨烯性能的影响
赵天宇, 杨程, 宋洪松
北京航空材料研究院 钢与稀贵金属研究所, 北京 100095
Effects of Raw Materials Size on Properties of Graphite Oxide and Graphene
ZHAO Tian-yu, YANG Cheng, SONG Hong-song
Steel and Precious Metals Research Institute, Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(4219 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用改进的Hummers法对不同尺寸的天然石墨进行氧化处理,水合肼还原获得石墨烯。利用红外光谱(FTIR)、拉曼光谱(Raman)、X射线衍射(XRD)等对天然石墨、氧化石墨和石墨烯的化学结构、光谱学及结晶性进行表征。结果表明:天然石墨被充分氧化为氧化石墨,氧化石墨被还原为完美的石墨烯;天然石墨尺寸越小,氧化程度越大,氧化石墨的层间距越大;氧化石墨的D峰和G峰的强度比ID/IG与天然石墨尺寸大小成正比;与同尺寸的氧化石墨相比,石墨烯的ID/IG值比氧化石墨的大,说明石墨烯中sp2杂化碳层平面的平均尺寸小于氧化石墨的平均尺寸,新生成的石墨化区域被一些缺陷分割成尺寸更小的sp2杂化区域。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵天宇
杨程
宋洪松
关键词 石墨烯性能X射线衍射拉曼红外    
Abstract:The graphite oxide (GO) was prepared from natural graphite of different size with the modified Hummers method, and then the graphene was prepared by using hydrazine hydrate to reduce the exfoliated graphite oxide. The chemical structure, spectroscopy and the crystallinity of graphite, graphite oxide and graphene were characterized by using FTIR, Raman and XRD, respectively. The results show that the natural graphite is fully oxidized to graphite oxide, the graphite oxide is reduced to the perfect graphene. The smaller the size of natural graphite is, the greater the degree of oxidation, and the greater the interlayer spacing of graphite oxide are. The ratio of graphene D to G band intensities is proportional to size of graphite; compared with graphite oxide at similar size, the ratio of graphene D to G band intensities is higher than that of graphite oxide, suggesting that the average size of sp2-hybridized carbon layer surface of graphene is smaller than that of graphite oxide, and the new generation graphitization region is separated to smaller sp2-hybridized regions by some defects.
Key wordsgraphene    property    XRD    Raman    IR
收稿日期: 2013-06-17      出版日期: 2014-09-20
中图分类号:  O646  
基金资助:国家自然科学基金资助项目(50903079)
通讯作者: 杨程(1978- ),女,博士,主要从事石墨烯的性能及应用研究,联系地址:北京市81信箱72分箱(100095)     E-mail: chengyang_78@126.com
引用本文:   
赵天宇, 杨程, 宋洪松. 原料尺寸对氧化石墨与石墨烯性能的影响[J]. 材料工程, 2014, 0(9): 76-82.
ZHAO Tian-yu, YANG Cheng, SONG Hong-song. Effects of Raw Materials Size on Properties of Graphite Oxide and Graphene. Journal of Materials Engineering, 2014, 0(9): 76-82.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.09.013      或      http://jme.biam.ac.cn/CN/Y2014/V0/I9/76
[1] NOVOSELOV K S, FIRSOV A A. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[2] DIKIN D A, STANKOVIEH S, ZINMEY E J, et al. Preparation and characterization of graphene oxide paper[J].Nature, 2007, 448(7): 457-460.
[3] LEE C, WEI X, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887):385-388.
[4] BLANDIN A A, GHOSH S, BAO W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3):902- 907.
[5] BOLOTIN K I, SIKES K J, JIANG Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008,146(9-10):351-355.
[6] KUILA T, BOSE S, KUMAR A, et al. Chemical functionalization of graphene and its applications[J]. Progress in Materials Science, 2012, 57(7): 1061-1105.
[7] HUANG X, QI X Y, BOEY F, et al. Graphene-based composites[J]. Chemical Society Reviews, 2012, 41(2): 666-686.
[8] STANKOVICH S, DIKIN D A, DOMMETT G H B, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7): 282-286.
[9] KUILLA T, BHADRA S, YAO D H. Recent advances in graphene based polymer composites[J]. Progress in Materials Science, 2010, 35(11): 1350-1375.
[10] OOSTINGA J B, HEERSEHE H B, LIU X, et al. Gate-induced insulating state in bilayer graphene devices[J].Nature Materials, 2008, 7(2): 151-157.
[11] ZHU C, GUO S, FANG Y, et al. Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets[J].ACS Nano, 2010, 4(4):2429-2437.
[12] RAMANATHAN T, ABDALA A A, STANKOVIEH S, et al. Functionalized graphene sheets for polymer nanocomposites[J]. Nature Nanotechnology, 2008, 3(6): 327-331.
[13] STEURER P,WISSERT R,THOMANN R, et al. Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide[J]. Macromolecular Rapid Communications, 2009, 30(4-5):316-327.
[14] WANG X, ZHI L, MULLEN K, et al. conductive graphene electrodes for dye-sensitized solar cells[J].Nano Letters, 2008, 8(1):323-327.
[15] STOLLER M D, PARK S, ZHU Y, et al. Graphene-based ultracapacitors[J]. Nano Letters, 2008, 8(10):3498-3502.
[16] VASILIOS G, MICHAL O, ATHANASIOS B, et al. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications[J]. Chemical Reviews, 2012, 112(11): 6156-6214.
[17] JAY R LOMEDA, CONDELL D DOYLE, DMITRY V KOSYNKIN, et al. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets[J]. Journal of the American Chemical Society, 2008, 130(48): 16201-16206.
[18] WU Z S, REN W C, CHENG H M, et al.Synthesis of high-quality graphene with a pre-determined number of layers[J].Carbon,2009,47(2): 493-499.
[19] NETHRAVATHI C, RAJAMATHI M. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide[J]. Carbon, 2008, 46(14): 1994-1998.
[20] WANG H L,ROBINSON J T,LI X L,et al.Solvothermal reduction of chemically exfoliated graphene sheets[J].Journal of the American Chemical Society,2009,131 (29): 9910-9911.
[21] ARISTOV V Y, URBANIK G, KNUPFER M, et al.Graphene synthesis on cubic SiC/Si wafers.Perspectives for mass production of graphene-based electronic devices[J].Nano Letters, 2010, 10(3): 992-995.
[22] SINGH N, GUPTA P K, SRIVASTAVA, et al.Growth,structure and field emission characteristics of petal like carbon nano-structured films[J].Thin Solid Films, 2005,492(1-2): 124-130.
[23] CANO-MARQUEZ A G, RODRIGUEZ-MACAS F J, CAMPOS-DELGADO J, et al.Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes[J].Nano Letters,2009, 9(4): 1527-1533.
[24] HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339.
[25] WOLF E L. Graphene[M]. New York: Oxford University Press, 2014. 98-125.
[26] 杨程,刘大博,成波,等. 石墨/聚苯乙烯插层复合材料的介电性能研究[J].功能材料,2010, 41(11):1994-1997. YANG Cheng, LIU Da-bo, CHENG Bo, et al. Dielectric performances of graphene/PS intercalation composites[J]. Journal of Functional Materials, 2010,41(11),1994-1997.
[27] YANG C, SUN L J, SONG H S, et al. Process conditions of exfoliated single-layer graphite[J]. Advanced Materials Research, 2012, 430-432:350-354.
[28] 宋洪松,刘大博. 石墨烯的制备及石墨烯/PVDF复合材料介电性能的研究[J]. 化学工程师, 2011,(8):1-4. SONG Hong-song, LIU Da-bo. The preparation of graphene and the research of dielectric properties of graphene/PVDF composites[J]. Chemical Engineer, 2011,(8): 1-4.
[29] 宋洪松,杨程,刘大博. 石墨烯/环氧树脂复合材料的介电性能研究[J]. 功能材料, 2012,43(9):1185-1188. SONG Hong-song, YANG Cheng, LIU Da-bo. Dielectric properties of graphene/epoxy composites[J]. Journal of Functional Materials, 2012, 43(9):1185-1188.
[30] 陈翠红. 少层石墨的制备及Raman光谱研究[D]. 兰州:兰州大学,2010. CHEN Cui-hong. Preparation and Raman spectroscopy of few-layer grapheme [D].Lanzhou: Lanzhou University, 2010.
[31] 俞惠江. 氧化石墨及石墨烯复合材料的制备及表征[D]. 桂林:桂林理工大学,2011. YU Hui-jiang. Preparation and characterization of graphite oxidation and graphene composite materials[D]. Guilin: Guilin University of Technology, 2011.
[32] ZHANG Hong-xin, FENG Peter-x. Fabrication and characterization of few-layer graphene[J]. Carbon, 2010,48(2): 359-364.
[33] 张华. 现代有机波谱分析[M]. 北京: 化学工业出版社, 2005. 251-307. ZHANG Hua. Modern Organic Spectral Analysis[M]. Beijing: Chemical Industry Press, 2005. 251-307.
[34] PIMENTA M A, DRESSELHAUS G, DRESSELHAUS M S, et al. Studying disorder in graphite-based systems by Raman spectroscopy[J]. Physical Chemistry Chemical Physics, 2007, 9(11): 1276-1291.
[1] 崔雪, 张松, 张春华, 吴臣亮, 王强, 董世运. 高性能梯度功能材料激光增材制造研究现状及展望[J]. 材料工程, 2020, 48(9): 13-23.
[2] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[3] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[4] 陈丹玲, 黄志强, 何新华. Ta掺杂Na0.5Bi4.5Ti4O15陶瓷的显微结构和电性能[J]. 材料工程, 2020, 48(9): 93-99.
[5] 孙昊, 贾凯波, 赵凤光, 张羊换, 任慧平. Mg22Y2Ni10Cu2储氢合金的放氢性能[J]. 材料工程, 2020, 48(9): 100-106.
[6] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[7] 曲敬龙, 易出山, 陈竞炜, 史玉亭, 毕中南, 杜金辉. GH4720Li合金中析出相的研究进展[J]. 材料工程, 2020, 48(8): 73-83.
[8] 高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
[9] 胡洁, 董中奇, 沈英明, 王杨, 杨俊雅. Mo元素对LaFe11.5Si1.5磁制冷材料耐腐蚀性能及磁性能的影响[J]. 材料工程, 2020, 48(8): 119-125.
[10] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[11] 张桂源, 李于朋, 宫文彪, 宫明月, 崔恒. Zn对钢/铝异种金属搅拌摩擦焊接头界面组织及性能的影响[J]. 材料工程, 2020, 48(8): 149-156.
[12] 杨程, 时双强, 郝思嘉, 褚海荣, 戴圣龙. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020, 48(7): 1-13.
[13] 钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7): 14-23.
[14] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[15] 李娜, 张儒静, 甄真, 许振华, 何利民. 等离子体增强化学气相沉积可控制备石墨烯研究进展[J]. 材料工程, 2020, 48(7): 36-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn