Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (11): 50-54    DOI: 10.11868/j.issn.1001-4381.2014.11.009
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
La0.3Sr0.7Fe0.7Cu0.2Mo0.1O3-δ钙钛矿超细陶瓷粉体制备与催化性能研究
孟波, 郝贵增, 秦敬灿, 谭小耀
山东理工大学 化工学院, 山东 淄博 255049
Preparation and Catalytic Performance of La0.3Sr0.7Fe0.7Cu0.2Mo0.1O3-δ Ultrafine Perovskite Powder
MENG Bo, HAO Gui-zeng, QIN Jing-can, TAN Xiao-yao
School of Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, China
全文: PDF(1678 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用溶胶低温燃烧法制备了单一组成的La0.3Sr0.7Fe0.7Cu0.2Mo0.1O3-δ(LSFCM) 超细钙钛矿陶瓷粉体。用XRD,SEM以及TA等方法对粉体的物相、形貌、粒度以及导电性能等进行了表征。考察了LSFCM陶瓷粉体对甲烷部分氧化(POM)制备合成气的催化活性与稳定性。结果表明:溶胶燃烧粉末经800℃下煅烧4h可得到平均粒径小于35nm的立方钙钛矿结构LSFCM陶瓷粉体,相对密度为96.7%的LSFCM烧结体在空气气氛600℃温度下电导率达到26.27S·cm-1,在950℃、CH4/O2比为1.5~2.0时,甲烷转化率及一氧化碳与氢气选择性均达到90.0%以上;反应43 h 后虽产生少量积炭,但仍能保持钙钛矿结构,表明LSFCM粉体对甲烷部分氧化制合成气反应具有良好的催化活性和稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟波
郝贵增
秦敬灿
谭小耀
关键词 固体电解质La0.3Sr0.7Fe0.7Cu0.2Mo0.1O3-&delta超细陶瓷粉POM稳定性    
Abstract:La0.3Sr0.7Fe0.7Cu0.2Mo0.1O3-δ(LSFCM) ultrafine perovskite powder with homogeneous composition was synthesized via sol-gel low temperature combustion process. The phase, morphology, particle size and electrical conductivity of samples were characterized by XRD,SEM and TA measurements. The effect of LSFCM powder on the catalytic activity and stability in the partial oxidation of methane (POM) into syngas was investigated. The results indicate that LSFCM ceramic powders with cubic perovskite structure and the mean particle size of less than 35 nm can be obtained by calcinations of sol-gel combustion ash at 800℃ for 4 h. The conductivity of the LSFCM oxide measured on a sintered body having the relative density of 96.7% reaches up to 26.27 S·cm-1 at 600 ℃ in air atmosphere. The LSFCM powders exhibit excellent catalytic activity and good stability to the partial oxidation of methane into syngas. The methane conversion and CO and H2 selectivities reach above 90% in the CH4/O2 feed ratio of 1.5-2.0 at 950 ℃. XRD and TA analysis reveal that the LSFCM powders still maintain the perovskite structure with a slight coke deposition after 43 h of reaction.
Key wordssolid electrolyte    La0.3Sr0.7Fe0.7Cu0.2Mo0.1O3-δ    ultrafine ceramic powder    POM    stability
收稿日期: 2013-03-23      出版日期: 2014-11-20
中图分类号:  TQ174.75+8  
  O643.3  
  TQ028.1  
基金资助:国家自然科学基金(20976098,21176146,21276147)
通讯作者: 谭小耀(1966—), 男, 博士, 教授, 研究方向为反应工程与分离工程, 联系地址:山东淄博山东理工大学化工学院(255049).     E-mail: cestanxy@yahoo.com.cn
引用本文:   
孟波, 郝贵增, 秦敬灿, 谭小耀. La0.3Sr0.7Fe0.7Cu0.2Mo0.1O3-δ钙钛矿超细陶瓷粉体制备与催化性能研究[J]. 材料工程, 2014, 0(11): 50-54.
MENG Bo, HAO Gui-zeng, QIN Jing-can, TAN Xiao-yao. Preparation and Catalytic Performance of La0.3Sr0.7Fe0.7Cu0.2Mo0.1O3-δ Ultrafine Perovskite Powder. Journal of Materials Engineering, 2014, 0(11): 50-54.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.11.009      或      http://jme.biam.ac.cn/CN/Y2014/V0/I11/50
[1] HOU S E, AGUADERO A, ALONSO J A, et al. Fe-based perovskites as electrodes for intermediate-temperature solid oxide fuel cells[J]. Journal of Power Sources, 2011, 196: 5478-5484.
[2] 胡志强, 黄德锋, 刘显卿, 等. 纳米NiAl2O4粉体的制备与表征[J]. 材料工程, 2012,(8): 51-55.HU Zhi-qiang, HUANG De-feng, LIU Xian-qing, et al. Synthesis and characterization of NiAl2O4 nano-powder[J]. Journal of Materials Engineering, 2012,(8): 51-55.
[3] WANG H H, TABLET C, CARO J. Oxygen production at low temperature using dense perovskite hollow fiber membranes[J]. Journal of Membrane Science, 2008, 322 (1): 214-217.
[4] ITO W, NAGAI T, SAKON T. Oxygen separation from compressed air using a mixed conducting perovskite-type oxide membrane[J]. Solid State Ionics, 2007, 178(11-12): 809-816.
[5] TAN X Y, WANG Z G, MENG B, et al. Pilot-scale production of oxygen from air using perovskite hollow fibre membranes[J]. Journal Membrane Science, 2010, 352(1-2): 189-196.
[6] SALVATORE C, IGOR V. B, LEON L. Selection of mixed conducting oxides for oxidative dehydrogenation of propane with pulse experiments[J]. Applied Catalysis A: General, 2011, 391: 70-77.
[7] WANG H H, TABLET C, SCHIESTEL T, et al. Hollow fiber membrane reactors for the oxidative activation of ethane[J]. Catalysis Today, 2006, 118: 98-103.
[8] 郑育英, 廖世军, 黄慧民, 等. NiO-YSZ纳米复合粉体的制备及其表征[J].材料工程, 2011,(8): 68-71. ZHENG Yu-ying, LIAO Shi-jun, HUANG Hui-min, et al. Preparation and characteristic of NiO-YSZ nanocomposite powders[J]. Journal of Materials Engineering, 2011,(8): 68-71.
[9] CARO J, SCHIESTEL T, WERTH S, et al. Perovskite hollow fibre membranes in the partial oxidation of methane to synthesis gas in a membrane reactor[J]. Desalination, 2006, 199: 415-417
[10] GONG Z, HONG L. Integration of air separation and partial oxidation of methane in the La0.4Ba0.6Fe0.8Zn0.2O3-δ membrane reactor[J]. Journal Membrane Science, 2011, 380: 81- 86.
[11] DONG X L, JIN W Q, XU N P, et al. Dense ceramic catalytic membranes and membrane reactors for energy and environmental applications[J]. Chemistry Communication, 2011, 47: 10886-10902
[12] 翟永清, 张张, 霍国燕, 等. 溶胶凝胶法制备超细Sr2FeMoO6及磁性能研究[J]. 材料工程, 2009,(12): 34-36. ZHAI Yong-qing, ZHANG Zhang, HUO Guo-yan, et al. Preparation of superfine Sr2FeMoO6 by sol-gel method and magnetic properties[J]. Journal of Materials Engineering, 2009,(12): 34-36.
[13] 邵宗平, 熊国兴, 杨维慎. 系统选择钙钦矿型透氧膜材料[J]. 无机材料学报, 2001, 16(2): 297-304. SHAO Zong-ping, XIONG Guo-xing, YANG Wei-shen. Systematic selection of mixed conducting perovskite materials for oxygen separation[J]. Journal of Inorganic Materials, 2001, 16(2): 297-304.
[14] NAGAI T, ITO W, SAKON T. Relationship between cation substitution and stability of perovskite structure in SrCoO3-δ-based mixed conductors[J]. Solid State Ionics, 2007, 177 (39-40): 3433-3444.
[15] BABAKHANI E G, TOWFIGHI J, SHIRAZI L, et al. Order-disorder transition and phase stability of BaxSr1-xCo0.8Fe0.2O3-δ oxides[J]. Journal Membrane Science, 2011, 376: 78-82.
[16] YAREMCHENKO A A, TSIPIS E V, KOVALEVSKY A V, et al. Stability, oxygen permeability and chemical expansion of Sr(Fe,Al)O3-δ and Sr(Co,Fe)O3-δ-based membranes[J]. Solid State Ionics, 2011, 192: 259-268.
[17] DONG X L, ZHANG G R, LIU Z K, et al. CO2-tolerant mixed conducting oxide for catalytic membrane reactor[J]. Journal Membrane Science, 2009, 340: 141-147.
[18] TAN X Y, LI K. Inorganic hollow fibre membranes in catalytic processing[J]. Current Opinion Chemical Engineering, 2011, 1: 69-76.
[19] POLYNA V A, ALEXEY A M, MIKHAIL V P, et al. High-temperature transport and stability of SrFe1-xNbxO3-δ [J]. Solid State Sciences, 2009, 11: 1156-1162.
[20] ISHIDA J, MURATA K, ICHIKAWA T, et al. An oxygen permeable membrane La0.8Sr0.2(Ga0.8Mg0.2)1-xCrxO3-δ for a reduced atmosphere[J]. Solid State Ionics, 2009, 180 : 1045-1049.
[21] MENG Bo, TAN Xiao-yao, ZHANG Bao-yan, et al. New combustion process for nanosized BaCe0.95Y0.05O3-δ powders[J]. Journal of Rare Earths, 2004, 22(5): 658-662.
[1] 李鹏鹏, 苏复, 顾正桂. CeO2-Ag/AgBr复合微球的合成及光催化性能[J]. 材料工程, 2020, 48(9): 69-76.
[2] 马开心, 刘琪, 白甜, 路子杰, 于黎楠, 莫琛, 赵孔银, 刘亚. 聚酯无纺布支撑CaAlg/CaSiO3@SiO2的制备及其对Pb2+的吸附[J]. 材料工程, 2020, 48(9): 86-92.
[3] 陈丹玲, 黄志强, 何新华. Ta掺杂Na0.5Bi4.5Ti4O15陶瓷的显微结构和电性能[J]. 材料工程, 2020, 48(9): 93-99.
[4] 孙昊, 贾凯波, 赵凤光, 张羊换, 任慧平. Mg22Y2Ni10Cu2储氢合金的放氢性能[J]. 材料工程, 2020, 48(9): 100-106.
[5] 胡洁, 董中奇, 沈英明, 王杨, 杨俊雅. Mo元素对LaFe11.5Si1.5磁制冷材料耐腐蚀性能及磁性能的影响[J]. 材料工程, 2020, 48(8): 119-125.
[6] 刘欢, 张瑞英, 李金轩, 杨森, 闫晗. TiO2粒径对Al-TiO2-C细化剂组织及细化效果的影响[J]. 材料工程, 2020, 48(8): 126-133.
[7] 唐长斌, 卢宇轩, 王飞, 黄平, 于丽花, 薛娟琴. 用于水体中有机污染物电催化降解的非贵金属氧化物阳极的研究进展[J]. 材料工程, 2020, 48(6): 62-72.
[8] 刘媛媛, 李舒婷, 彭军, 安胜利. Gd2O3掺杂量对Ce1-xGdxO2-δ电解质导电性能的影响[J]. 材料工程, 2020, 48(6): 118-124.
[9] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[10] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[11] 丁楚珩, 侯甲彬, 夏龙, 张昕宇, 钟博, 张涛. SiCNW-Cf/LAS复合材料的制备和电磁波吸收性能[J]. 材料工程, 2020, 48(5): 41-48.
[12] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
[13] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[14] 杜晶晶, 赵军伟, 程晓民, 施飞. 高效光催化降解气相苯纳米TiO2微球的制备[J]. 材料工程, 2020, 48(5): 100-105.
[15] 巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn