Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (11): 55-61    DOI: 10.11868/j.issn.1001-4381.2014.11.010
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
高能球磨法制备的CNTs/Al-5%Mg复合材料的力学性能及断裂特性
陈亚光, 蔡晓兰, 王开军, 胡翠, 孙鸿鹏, 乐刚
昆明理工大学 冶金与能源工程学院, 昆明 650093
Mechanical Properties and Fracture Feature of CNTs/Al-5%Mg Composite Prepared by High-energy Ball Milling
CHEN Ya-guang, CAI Xiao-lan, WANG Kai-jun, HU Cui, SUN Hong-peng, LE Gang
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
全文: PDF(2718 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用高能球磨法制备了不同质量分数碳纳米管(CNTs)与Al-5%Mg(质量分数)粉末的复合粉末,用热压烧结工艺制备了CNTs/Al-5%Mg复合材料。结果表明:高能球磨法可以将CNTs均匀的分散到基体中,并与其产生良好结合;CNTs具有细化复合粉末晶粒尺寸的作用,当CNTs含量为3%时,复合粉末的平均晶粒尺寸达到最小值为63.6nm,继续增加CNTs的含量,复合粉末平均晶粒尺寸增大;当CNTs含量为2%时,复合材料的抗拉强度和硬度达到最大值,与基体材料相比分别提高了42.39%和36.5%;CNTs/Al-5%Mg复合材料的强化机制为细晶强化和载荷传递。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈亚光
蔡晓兰
王开军
胡翠
孙鸿鹏
乐刚
关键词 高能球磨铝基复合材料碳纳米管断口强化机理    
Abstract:The composite powders of carbon nanotubes(CNTs) and Al-5%Mg(mass fraction) were fabricated by high-energy ball milling and hot-pressing sintering were used to consolidate the ball-milled composite powders with different CNTs contents. The results show that a certain mass of CNTs can be homogeneously dispersed in the matrix through the high-energy ball milling, the most of CNTs are embedded in the Al matrix and the CNTs have a close bonding with the Al matrix. In addition, the CNTs can play the role of grain refining. When the CNTs content is increased to 3 %, the average grain size of the composite powder reaches the minimum value 63.6nm and then the CNTs content is further increased, the average grain size of the composite powder grows big. When the CNTs content reaches 2%, tensile strength and hardness of the composites reaches the maximum value, up to 42.39% in tensile strength and 36.5% in hardness, compared to the matrix. Fine grain strengthening and load transfer are proved to be the strengthening mechanism of the CNTs/Al composite.
Key wordshigh-energy ball milling    Al matrix composite    carbon nanotubes(CNTs)    fracture    mechanism
收稿日期: 2013-02-22      出版日期: 2014-11-20
中图分类号:  TB331  
基金资助:云南省应用基础研究计划项目(KKS0201152018)
通讯作者: 蔡晓兰(1965-), 女, 教授, 博士生导师, 从事特种金属粉体和材料制备及高能球磨设备开发, 联系地址:云南省昆明理工大学莲华校区冶金与能源学院(690093).     E-mail: cxl9761@163.com
引用本文:   
陈亚光, 蔡晓兰, 王开军, 胡翠, 孙鸿鹏, 乐刚. 高能球磨法制备的CNTs/Al-5%Mg复合材料的力学性能及断裂特性[J]. 材料工程, 2014, 0(11): 55-61.
CHEN Ya-guang, CAI Xiao-lan, WANG Kai-jun, HU Cui, SUN Hong-peng, LE Gang. Mechanical Properties and Fracture Feature of CNTs/Al-5%Mg Composite Prepared by High-energy Ball Milling. Journal of Materials Engineering, 2014, 0(11): 55-61.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.11.010      或      http://jme.biam.ac.cn/CN/Y2014/V0/I11/55
[1] WONG P H S, AKINWANDE D. Carbon Nanotube and Graphene Device Physics[M]. Cambridge: Cambridge University Press, 2011.74-81.
[2] ODOM T W, HUANG J L, KIM P, et al. Atomic structure and electronic properties of single-walled carbon nanotubes[J]. Nature,1998,391: 62-64.
[3] 丁鹤雁. 热处理前后包覆Co及Co/Fe碳纳米管电磁性能的研究[J]. 航空材料学报,2013,33(5):54-60.DING He-yan. Electromagnetic properties of Co and Co/Fe coated MWCNTs before and after heat treatment[J]. Journal of Aeronautical Materials, 2013,33(5):54-60.
[4] TESSONNIER J P, ROSENTHAL D, HANSEN T W, et al. Analysis of the structure and chemical properties of some commercial carbon nanotubes[J].Carbon,2009,47(7):1779-1798.
[5] ZOO Y S, AN J W,LIM D P, et al. Effect of carbon nanotube addition on tribological behavior of UHMWPE [J].Tribology Letters,2004,16(4):305-309.
[6] CHEN L M, OZISIK R, SCHADLER L S. The influence of carbon nanotube aspect ratio on the foam morphology of MWNT/PMMA nanocomposite foams[J].Polymer, 2010,51(11):2368-2375.
[7] NING J W,ZHANG J J,PAN Y B, et al.Fabrication and thermal property of carbon nanotube/SiO2 composites [J].Journal of Materials Science Letters,2003,22(14):1019-1021.
[8] ZHU Y F, SHI L, LIANG J,et al.Synthesis of zirconia nanoparticles on carbon nanotubes and their potential for enhancing the fracture toughness of alumina ceramics[J]. Composites, 2008,39(7-8):1136-1141.
[9] ESAWI A M K, MORSI K, SAYED A, et al. The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites[J]. Composites, 2011,42 (3):234-243.
[10] CHOI H J, BAE D H. Strengthening and toughening of aluminum by single-walled carbon nanotubes[J]. Materials Science and Engineering,2011, 528(6):2412-2417.
[11] LIPECKA J, ANDRZEJCZUK M, LEWANDOWSKA M,et al. Evaluation of thermal stability of ultrafine grained aluminium matrix composites reinforced with carbon nanotubes[J]. Composites Science and Technology,2011,71(16):1881-1885.
[12] STEIN J, LENCZOWSKI B, FRETY N, et al. Mechanical reinforcement of a high-performance aluminium alloy AA5083 with homogeneously dispersed multi-walled carbon nanotubes[J]. Carbon,2012,50(6):2264-2272.
[13] CHOI H, WANG L, CHEON D, et al. Preparation by mechanical alloying of Al powders with single-, double-, and multi-walled carbon nanotubes for carbon/metal composites[J]. Composites Science and Technology, 2013,74(24) :91-98.
[14] 潘复生,张丁非.铝合金及应用[M].北京:化学工业出版社,2006.3-5.
[15] KANG K,BAE G, KIM B, et al. Thermally activated reactions of multi-walled carbon nanotubes reinforced aluminum matrix composite during the thermal spray consolidation[J]. Materials Chemistry and Physics,2012,133(1):495-499.
[16] LIU Q, KE L M, LIU F C, et al. Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing[J]. Materials and Design,2013,45:343-348.
[17] 钟蓉,丛洪涛,成会明,等.单壁纳米碳管增强纳米铝基复合材料的制备[J].材料研究学报,2002,16(4):344-348. ZHONG Rong, CONG Hong-tao, CHENG Hui-ming, et al. Preparation of SWNTs/Nano-Al composites[J]. Chinese Journal Materials Research,2002,16(4):344-348.
[18] CHOI H J,SHIN J Y,MIN B H,et al. Reinforcing effects of carbon nanotubes in structural aluminum matrix nanocomposites[J]. Journal of Materials Research,2009,24(8):2610-2616.
[19] MA P C, WANG S Q, KIM J K, TANG B Z. In-situ amino functionalization of carbon nanotubes using ball milling[J]. Journal of Nanoscience and Nanotechnology,2009,9(2):749-753.
[20] PEREZ-BUSTAMANTE R,PEREZ-BUSTAMANTE F, ESTRADA-GUEL I, et al. Characterization of Al2024-CNTs composites produced by mechanical alloying[J]. Powder Technology,2011,212(3):390-396.
[21] WANG L, CHOI H,MYOUNG J M, et al. Mechanical alloying of multi-walled carbon nanotubes and aluminium powders for the preparation of carbon/metal composites[J].Carbon,2009,47(15):3427-3433.
[22] MORSI K, ESAWI A. Effect of mechanical alloying time and carbon nanotube (CNT) content on the evolution of aluminium (Al)-CNT composite powders[J]. Journal of Materials Science, 2007,42(13):4954-4959.
[23] ESAWI A, MORSI K. Dispersion of carbon nanotubes (CNTs) in aluminum powder[J].Composites, 2007,38(2):646-650.
[24] LIU Z Y,WANG Q Z,XIAO B L,et al. Experimental and modeling investigation on SiCp distribution in powder metallurgy processed SiCp/2024 Al composites[J].Materials Science and Engineering,2010,527(21-22):5582-5591.
[25] MORSI K, ESAWI A, BORAH P, et al. Characterization and spark plasma sintering of mechanically milled aluminium-carbon nanotube (CNT) composite powders[J]. Journal of Composite Materials,2010,44(16):1991-2003.
[26] DEMCZYK B G, WANG Y M, CUMINGS J, et al. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes[J].Materials Science and Engineering: A,2002,334(1-2):173-178.
[27] OROWAN E. Von,zur kristallplastizitat III. über den Mechanismus des gleitvorganges[J]. Z Phys, 1934, 89: 634-659.
[28] COX H L. The elasticity and strength of paper and other fibrous materials[J].British journal of applied physics,1952,3(3):72-79.
[29] GEORGE R, KASHYAP K T, RAHUL R, et al. Strengthening in carbon nanotube/aluminium (CNT/Al) composites[J]. Scripta Materialia,2005,53(10): 1159-1163.
[30] ESAWI A,MORSI K,SAYED A, et al. Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium[J]. Composites Science and Technology,2010,70(16):2237-2241.
[31] LANDRY K, KALOGEROPOULOU S, EUSTATHOPOULOS N. Wettability of carbon by aluminum and aluminum alloys[J].Materials Science and Engineering: A,1998,254(1-2):99-111.
[32] KWON H, PARK D H, SILVAIN J F, et al. Investigation of carbon nanotube reinforced aluminum matrix composite materials[J]. Composites Science and Technology,2010,70(3):546-550.
[33] SEONG H G, LOPEZ H F, ROBERTSON DP, et al. Interface structure in carbon and graphite fiber reinforced 2014 aluminum alloy processed with active fiber cooling[J]. Materials Science and Engineering: A, 2008,487(1-2):201-209.
[34] INAM F,YAN X,PEIJS T,REECE M J. The sintering and grain growth behaviour of Ceramic-carbon nanotube nanocomposites[J]. Composites Science and Technology,2010,70(6):947-952.
[1] 王欣, 陈星, 胡仁高, 胡博, 许春玲, 汤智慧, 古远兴. 冷挤压GH4169合金孔结构疲劳性能与断口分析[J]. 材料工程, 2020, 48(6): 156-162.
[2] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[3] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[4] 杨斌, 李云龙, 王世杰, 聂瑞, 王照智. 拉应力下碳纳米管增强高分子基复合材料的应力分布[J]. 材料工程, 2020, 48(2): 79-86.
[5] 殷小春, 尹有华, 成迪, 杨智韬. 正应力支配下混合顺序对PA6/HDPE/CNTs体系结构及性能的影响[J]. 材料工程, 2020, 48(2): 87-93.
[6] 张军, 刘崇宇. 粉末冶金法制备CNT和SiC混杂增强铝基复合材料的摩擦磨损性能[J]. 材料工程, 2020, 48(11): 131-139.
[7] 熊伟腾, 王云英, 范金娟, 肖淑华. 非定向有机玻璃拉伸断口形貌与拉伸温度相关性分析[J]. 材料工程, 2020, 48(10): 96-104.
[8] 陈玮, 孙晓刚, 胡浩, 王杰, 李旭, 梁国东, 黄雅盼, 魏成成. AC+Li(NiCoMn)O2/Li4Ti5O12+MWCNTs混合型电容器[J]. 材料工程, 2020, 48(1): 128-135.
[9] 王晓辉, 罗海文. 飞机起落架用超高强度不锈钢的研究及应用进展[J]. 材料工程, 2019, 47(9): 1-12.
[10] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[11] 李旭, 孙晓刚, 蔡满园, 王杰, 陈玮, 陈珑, 邱治文. 氟化多壁碳纳米管作正极对锂/氟电池性能的影响[J]. 材料工程, 2019, 47(8): 22-27.
[12] 蔡满园, 孙晓刚, 陈玮, 邱治文, 陈珑, 刘珍红, 聂艳艳. 以预锂化多壁碳纳米管为负极的锂离子电容器性能[J]. 材料工程, 2019, 47(5): 145-152.
[13] 杨宇凯, 张宝, 王旭东, 张虎生, 武岳, 关永军. 石墨烯及碳化硅增强铝基复合材料的冲击力学行为[J]. 材料工程, 2019, 47(3): 15-22.
[14] 葛超群, 汪刘应, 刘顾. 碳基/羰基铁复合吸波材料的研究进展[J]. 材料工程, 2019, 47(12): 43-54.
[15] 黄凯, 蒋日鹏, 李晓谦, 李瑞卿, 张立华. 超声外场对原位TiB2/2A14铝基复合材料的摩擦磨损性能的影响[J]. 材料工程, 2019, 47(12): 78-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn