Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (11): 102-106    DOI: 10.11868/j.issn.1001-4381.2014.11.018
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
疲劳裂纹扩展的金属磁记忆信号特征
金宝1, 邸新杰1, 张建军2, 李伟2
1. 天津大学 天津市现代连接技术重点实验室, 天津 300072;
2. 中国石油天然气兰州工程质量监督站, 兰州 730060
Metal Magnetic Memory Signal Feature of Fatigue Cracking Propagation
JIN Bao1, DI Xin-jie1, ZHANG Jian-jun2, LI Wei2
1. Tianjin Key Laboratory of Advanced Joining Technology, Tianjin University, Tianjin 300072, China;
2. Engineering Quality Supervision of CNPC, Lanzhou 730060, China
全文: PDF(2591 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过对Q235B钢缺口试件的方波载荷拉-拉疲劳试验,在不同循环次数下利用磁记忆检测仪在线测量试件表面的磁记忆信号。结果表明:未经处理试样沿缺口处的磁记忆信号在疲劳初始阶段随机分布;循环加载5000次后,磁记忆信号曲线转变为具有一个波峰-波谷的曲线波形;在循环稳定阶段,磁记忆信号曲线趋于稳定;宏观裂纹出现时,磁记忆信号曲线波形发散;最后阶段,磁记忆信号逐渐增强;磁机械效应能较好地解释循环初始阶段磁记忆信号变化规律。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金宝
邸新杰
张建军
李伟
关键词 疲劳裂纹磁记忆信号裂纹扩展信号特征    
Abstract:Tension-tension fatigue tests on notched specimens made of Q235B steel were conducted by square wave load and on-line magnetic memory signals on the surface of specimens were measured under different fatigue cycles using magnetic memory detector. The results show that magnetic memory signals along the notch of untreated samples distribute randomly in the initial stage of fatigue. After 5000 cycles, magnetic memory signal curve transforms into waveform curve with one peak-to-trough. Magnetic memory signal curves tend to be stable before the cracks initiated, but diverge after macroscopic crack appeared. In the last stage, magnetic memory signal densities increase with increasing cycles. Based on magneto-mechanical effect, the variation of magnetic memory signals in the initial stage of fatigue can be well explained.
Key wordsfatigue crack    magnetic memory signal    crack propagation    signal feature
收稿日期: 2013-04-10      出版日期: 2014-11-20
1:  TG115.28  
基金资助:天津市自然科学基金(11JCYBJC6000);高等学校博士学科点专项基金(20100032120019)
通讯作者: 邸新杰(1973-), 男, 博士, 副教授, 主要从事磁性无损检测与评价和金属焊接性方面的教学和研究工作, 联系地址:天津大学材料科学与工程学院(300072).     E-mail: dixinjie@tju.edu.cn
引用本文:   
金宝, 邸新杰, 张建军, 李伟. 疲劳裂纹扩展的金属磁记忆信号特征[J]. 材料工程, 2014, 0(11): 102-106.
JIN Bao, DI Xin-jie, ZHANG Jian-jun, LI Wei. Metal Magnetic Memory Signal Feature of Fatigue Cracking Propagation. Journal of Materials Engineering, 2014, 0(11): 102-106.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.11.018      或      http://jme.biam.ac.cn/CN/Y2014/V0/I11/102
[1] 冷建成,徐敏强,王坤,等.基于磁记忆技术的疲劳损伤监测[J].材料工程,2011,(5):26-29.LENG Jian-cheng, XU Min-qiang, WANG Kun, et al. Monitoring fatigue damage using magnetic memory technique[J]. Journal of Materials Engineering, 2011,(5): 26-29.
[2] WANG Z D, YAO K, DENG B, et al. Theoretical studies of metal magnetic memory technique on magnetic flux leakage signals[J]. NDT & E International, 2010, 43(4): 354-359.
[3] DOUBOV A A. Express method of quality control of a spot resistance welding with usage of metal magnetic memory[J]. Weld World, 2002, 46: 317-320.
[4] 任吉林,林俊明.金属磁记忆检测技术[M].北京:中国电力出版社,2000.REN Ji-lin, LIN Jun-ming. Metal Magnetic Memory Testing Technology[M]. Beijing: China Electric Power Press, 2000.
[5] 任吉林,邬冠华,宋凯,等.金属磁记忆检测机理的探讨[J].无损检测,2002,24(1):29-31.REN Ji-lin,WU Guan-hua, SONG Kai, et al. Study on the mechanism of metal magnetic memory testing[J]. Nondestructive Testing, 2002, 24(1):29-31.
[6] LENG Jian-cheng, XU Min-qiang, XU Ming-xiu, et al. Magnetic field variation induced by cyclic bending stress[J]. NDT & E International, 2009, 42(5): 410-414.
[7] JILES D C, ATHERTON D L. Theory of ferromagnetic hysteresis[J]. Journal of Magnetism and Magnetic Materials, 1986, 61(1-2): 48-60.
[8] LENG Jian-cheng, XU Min-qiang, ZHOU Guo-qiang, et al. Effect of initial remanent states on the variation of magnetic memory signals[J]. NDT & E International, 2012,(52): 23-27.
[9] GUO Peng-ju, CHEN Xue-dong, GUAN Wei-he, et al. Effect of tensile stress on the variation of magnetic field of low-alloy steel[J]. Journal of Magnetism and Magnetic Materials, 2011, 323(20): 2474-2477.
[10] YANG En, LI Lu-ming, CHEN Xing. Magnetic field aberration induced by cycle stress[J]. Journal of Magnetism and Magnetic Materials, 2007, 312(1): 72-77.
[11] JILES D C. Theory of the magnetomechanical effect[J]. Journal of Physics D(Applied Physics), 1995, 28(8): 1537-1546.
[12] KURUZAR M E, CUUITY B D. The magnetostriction of iron under tensile and compressive stress[J]. International Journal of Magnetism, 1971, 1(4): 323-325.
[13] 彼得森R E.应力集中系数[M].北京:国防工业出版社,1988. PETERSON R E. Stress Concentration Factor[M]. Beijing: National Defence Industry Press, 1988.
[14] DONG Li-hong, XU Bin-shi, DONG Shi-yun, et al. Monitoring fatigue crack propagation of ferromagnetic materials with spontaneous abnormal magnetic signals[J]. International Journal of Fatigue, 2008, 30(9): 1599-1605.
[1] 左平, 魏大盛, 王延荣. FGH95粉末高温合金裂纹闭合效应及裂纹扩展特性研究[J]. 材料工程, 2015, 43(8): 56-61.
[2] 许天旱, 王荣, 冯耀荣, 雒设计, 王党会, 杨宝. 应力比对K55套管钻井钢疲劳裂纹扩展性能的影响[J]. 材料工程, 2015, 43(6): 79-84.
[3] 丁昊昊, 王文健, 郭俊, 刘启跃, 朱旻昊. 轴重对轮轨材料滚动磨损与损伤行为影响[J]. 材料工程, 2015, 43(10): 35-41.
[4] 杨冬野, 曹福洋, 许文勇, 左欣, 李周, 张国庆, 孙剑飞. 喷射成形GH738合金的疲劳裂纹扩展行为[J]. 材料工程, 2014, 0(7): 55-59.
[5] 薛红前, 姜祎君, 封硕. 镍基合金超声疲劳裂纹扩展寿命预测研究[J]. 材料工程, 2014, 0(3): 7-13,20.
[6] 沙桂英, 韩玉, 刘腾, 李朝华, 王杰. 应力幅对退火态Mg-3Al-2Sc合金疲劳行为的影响[J]. 材料工程, 2012, 0(12): 24-28.
[7] 严益民, 胡正飞, 林富生, 赵双群. 汽轮机转子30Cr1Mo1V钢长期服役状态下的高温疲劳行为[J]. 材料工程, 2012, 0(11): 38-41,96.
[8] 敖波, 邓翠贞, 邬冠华. 2A50锻铝三点弯曲试验与高分辨率CT成像分析[J]. 材料工程, 2011, 0(5): 13-16.
[9] 胡燕慧, 钟群鹏, 张峥, 韩邦成. 超声疲劳试验方法对S06钢疲劳性能及裂纹萌生机制的影响[J]. 材料工程, 2011, 0(2): 26-30.
[10] 王强, 王欣, 高玉魁, 宋颖刚. 孔强化对TC18钛合金疲劳寿命的影响[J]. 材料工程, 2011, 0(2): 84-86.
[11] 宫玉辉, 刘铭, 张坤, 黄敏, 伊琳娜, 戴圣龙. 不同腐蚀环境对7475-T7351铝合金疲劳性能及裂纹扩展速率的影响[J]. 材料工程, 2010, 0(9): 71-73.
[12] 王慧鹏, 董世运, 董丽虹, 徐滨士. 不同应力集中系数下磁记忆信号影响因素研究[J]. 材料工程, 2010, 0(12): 35-38.
[13] 王章忠, 周衡志, 巴志新, 白允强. 交变载荷下化学镀Ni-P合金在45钢疲劳裂纹尖端的沉积行为研究[J]. 材料工程, 2010, 0(11): 66-68,87.
[14] 秦昕, 张彦华, 熊林玉. GH4169合金焊接接头高温疲劳裂纹扩展性能试验研究[J]. 材料工程, 2009, 0(7): 36-38.
[15] 任吉林, 舒铭航, 伍家驹, 宋凯, 陈曦, 陈晨. 18CrNi4A钢力-磁效应的ANSYS模拟[J]. 材料工程, 2009, 0(11): 40-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn