Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (8): 43-48    DOI: 10.11868/j.issn.1001-4381.2015.000126
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
后热处理对Cf/ZrC复合材料微观结构及性能的影响
陈红梅1,2, 祝玉林2, 王松2
1. 湖南涉外经济学院 机械工程学院, 长沙 410205;
2. 国防科学技术大学 新型陶瓷纤维及其复合材料重点实验室, 长沙 410073
Effect of Post Heat Treatment on Microstructure and Properties of Cf/ZrC Composites
CHEN Hong-mei1,2, ZHU Yu-lin2, WANG Song2
1. College of Mechanical Engineering, Hunan International Economics University, Changsha 410205, China;
2. Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410073, China
全文: PDF(7643 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以C/C复合材料为基材、Zr2Cu合金为渗剂,采用低温反应熔渗工艺制备得到碳纤维增强碳化锆陶瓷基复合材料(Cf/ZrC),重点研究后热处理对Cf/ZrC复合材料微观结构及性能的影响。结果表明:经1400~2200℃热处理后,材料密度下降,开孔率增大;材料在后热处理过程中会发生残余富铜熔体的流失、ZrC基体体积分数的增加以及ZrC基体结构的破坏;后热处理造成材料力学性能下降,热处理温度达到2200℃时,材料的弯曲强度保留率仅为52.3%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈红梅
祝玉林
王松
关键词 Cf/ZrC复合材料热处理微观结构性能    
Abstract:Carbon fiber reinforced zirconium carbide ceramic matrix composites (Cf/ZrC) were fabricated by reactive melt infiltration at relative low temperature, C/C composites as substrate, Zr2Cu alloy as infiltrator. Effect of post heat treatment on microstructure and properties of Cf/ZrC composites was investigated. The results show that after different temperature heat treatments at 1400-2200℃, the density of the composites decreases, and the porosity increases. During post heat treating, the residual copper rich melt in the composites evaporates, the volume fraction of ZrC matrix increases and the damage to the microstructure of ZrC matrix occurs. The mechanical properties of the composite decrease after post heat treatments. The flexural strength retention rate of the composites is only 52.3%, when the heat treatment temperature reaches 2200℃.
Key wordsCf/ZrC composite    heat treatment    microstructure    property
收稿日期: 2015-01-26      出版日期: 2017-08-10
中图分类号:  TB33  
通讯作者: 王松(1976-),男,研究员,主要研究方向:非氧化物陶瓷及其复合材料的设计与制备,联系地址:湖南省长沙市开福区德雅路109号国防科技大学一院材料重点实验室(410073),E-mail:wangsong0731@163.com     E-mail: wangsong0731@163.com
引用本文:   
陈红梅, 祝玉林, 王松. 后热处理对Cf/ZrC复合材料微观结构及性能的影响[J]. 材料工程, 2017, 45(8): 43-48.
CHEN Hong-mei, ZHU Yu-lin, WANG Song. Effect of Post Heat Treatment on Microstructure and Properties of Cf/ZrC Composites. Journal of Materials Engineering, 2017, 45(8): 43-48.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000126      或      http://jme.biam.ac.cn/CN/Y2017/V45/I8/43
[1] ZOU L H, WALI N, YANG J M, et al. Microstructural characterization of a Cf/ZrC composite manufactured by reactive melt infiltration[J]. International Journal of Applied Ceramic Technology, 2011, 8(2):329-341.
[2] 张响,陈招科,熊祥. C/C-SiC复合材料表面ZrB2基陶瓷涂层的制备及高温烧结机理[J]. 材料工程,2015,43(3):1-6. ZHANG X, CHEN Z K, XIONG X. Preparation and high-temperature sintering mechanism of ZrB2 ceramic composite coatings for C/C-SiC composites[J]. Journal of Materials Engineering, 2015, 43(3):1-6.
[3] ZHU Y L, WANG S, LI W, et al. Preparation of carbon fiber-reinforced zirconium carbide matrix composites by reactive melt infiltration at relative low temperature[J]. Scripta Materialia, 2012, 67(10):822-825.
[4] ZHAO D, ZHANG C R, HU H F, et al. Ablation behavior and mechanism of 3D C/ZrC composite in oxyacetylene torch environment[J]. Composites Science and Technology, 2011, 71(11):1392-1396.
[5] ZOU L H, WALI N, YANG J M, et al. Microstructural development of a Cf/ZrC composite manufactured by reactive melt infiltration[J]. Journal of the European Ceramic Society, 2010, 30(6):1527-1535.
[6] 李秀倩,焦健,邱海鹏,等. ZrC/SiC多组元改性C/C复合材料的制备及性能研究[J]. 航空材料学报,2014,34(3):69-73. LI X Q, JIAO J, QIU H P, et al. Preparation and performance of ZrC/SiC multi-components modified C/C composites[J]. Journal of Aeronautical Materials, 2014,34(3):69-73.
[7] SHEN X T, LI K Z, LI H J, et al. Microstructure and ablation properties of zirconium carbide doped carbon/carbon composites[J]. Carbon, 2010, 48(2):344-351.
[8] WANG Y G, ZHU X J, ZHANG L T, et al. Reaction kinetics and ablation properties of C/C-ZrC composites fabricated by reactive melt infiltration[J]. Ceramics International, 2011, 37(4):1277-1283.
[9] CHEN S A, ZHANG C R, ZHANG Y D, et al. Influence of pyrocarbon amount in C/C preform on the microstructure and properties of C/ZrC composites prepared via reactive melt infiltration[J]. Materials & Design, 2014, 58:570-576.
[10] HILLIG W B. Melt infiltration approach to ceramic matrix composites[J]. Journal of the American Ceramic Society, 1988, 71(2):C96-C99.
[11] ZHANG S M, WANG S, LI W, et al. Microstructure and properties of W-ZrC composites prepared by the displacive compensation of porosity (DCP) method[J]. Journal of Alloys and Compounds, 2011, 509(33):8327-8332.
[12] TONG Y G, BAI S X, CHEN K. C/C-ZrC composite prepared by chemical vapor infiltration combined with alloyed reactive melt infiltration[J]. Ceramics International, 2012, 38(7):5723-5730.
[13] JIANG J M, WANG S, LI W, et al. Preparation of 3D Cf/ZrC-SiC composites by joint processes of PIP and RMI[J]. Materials Science and Engineering:A, 2014, 607(23):334-340.
[14] ZHU Y L, WANG S, CHEN H M, et al. Fabrication of Cf/ZrC composites by infiltrating Cf/C performs with Zr-Cu alloys[J]. Materials Letters, 2013, 108:204-207.
[15] ZHU Y L, WANG S, CHEN H M, et al. Fabrication and characterization of 3-D Cf/ZrC composites by low-temperature liquid metal infiltration[J]. Composites Part B:Engineering, 2014, 56:756-761.
[16] ZHU Y L, WANG S, CHEN H M, et al. Microstructure and mechanical properties of Cf/ZrC composites fabricated by reactive melt infiltration at relatively low temperature[J]. Ceramics International, 2013, 39(8):9085-9089.
[17] WANG D, WANG Y J, RAO J C, et al. Influence of reactive melt infiltration parameters on microstructure and properties of low temperature derived Cf/ZrC composites[J]. Materials Science and Engineering:A, 2013, 568:25-32.
[18] ZHAO D, ZHANG C R, HU H F, et al. Preparation and characterization of three-dimensional carbon fiber reinforced zirconium carbide composite by precursor infiltration and pyrolysis process[J]. Ceramics International, 2011, 37(7):2089-2093.
[19] ZHANG S M, WANG S, LI W, et al. Mechanical properties of the low-temperature reactive melt infiltrated ZrB2-ZrC based composites[J]. Materials Letters, 2012, 78:81-84.
[1] 崔雪, 张松, 张春华, 吴臣亮, 王强, 董世运. 高性能梯度功能材料激光增材制造研究现状及展望[J]. 材料工程, 2020, 48(9): 13-23.
[2] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[3] 陈丹玲, 黄志强, 何新华. Ta掺杂Na0.5Bi4.5Ti4O15陶瓷的显微结构和电性能[J]. 材料工程, 2020, 48(9): 93-99.
[4] 孙昊, 贾凯波, 赵凤光, 张羊换, 任慧平. Mg22Y2Ni10Cu2储氢合金的放氢性能[J]. 材料工程, 2020, 48(9): 100-106.
[5] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[6] 曲敬龙, 易出山, 陈竞炜, 史玉亭, 毕中南, 杜金辉. GH4720Li合金中析出相的研究进展[J]. 材料工程, 2020, 48(8): 73-83.
[7] 胡洁, 董中奇, 沈英明, 王杨, 杨俊雅. Mo元素对LaFe11.5Si1.5磁制冷材料耐腐蚀性能及磁性能的影响[J]. 材料工程, 2020, 48(8): 119-125.
[8] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[9] 张桂源, 李于朋, 宫文彪, 宫明月, 崔恒. Zn对钢/铝异种金属搅拌摩擦焊接头界面组织及性能的影响[J]. 材料工程, 2020, 48(8): 149-156.
[10] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[11] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[12] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[13] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[14] 杨万鹏, 李嘉荣, 刘世忠, 赵金乾, 史振学, 王效光. 一种第三代单晶高温合金中高温横向持久性能[J]. 材料工程, 2020, 48(7): 139-145.
[15] 尹艳丽, 于鹤龙, 周新远, 宋占永, 王红美, 王文宇, 刘晓亭, 徐滨士. 基于正交实验方法的蛇纹石润滑油添加剂摩擦学性能[J]. 材料工程, 2020, 48(7): 146-153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn