Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (4): 146-151    DOI: 10.11868/j.issn.1001-4381.2015.000282
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
玻纤增强聚丙烯复合材料的应变率敏感特性
鲁雄, 杨旭静(), 段书用, 郑娟
湖南大学 汽车车身先进设计制造国家重点实验室, 长沙 410082
Strain Rate Sensitive Properties of Glass Fiber Reinforced Polypropylene Composites
Xiong LU, Xu-jing YANG(), Shu-yong DUAN, Juan ZHENG
State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
全文: PDF(1878 KB)   HTML ( 23 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用层合热压实验法将玻璃纤维基毡与聚丙烯薄膜复合制成不同玻纤含量的玻纤增强聚丙烯(GF/PP)复合板材,在不同的加载速率下进行拉伸测试,研究GF/PP复合材料的应变率敏感特性,分析Burgers模型对该材料本构关系拟合预测的可行性。结果表明:GF/PP复合材料在低应变率范围内对应变率是敏感的,随应变率的增加,其断裂应力和抗拉强度增大;随玻璃纤维含量的增加,其所对应的应变率效应反而有所下降。同时,Burgers模型能够有效地拟合预测出该材料的拉伸应力-应变曲线,与实验曲线相比,进一步验证了GF/PP复合材料的应变率敏感特性及其变化趋势。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鲁雄
杨旭静
段书用
郑娟
关键词 低应变率玻璃纤维聚丙烯Burgers模型应变率敏感特性    
Abstract

The glass fiber reinforced polypropylene (GF/PP) composite plate with different glass fiber contents was fabricated by the laminated hot-pressing experiment method using the glass fiber felt and polypropylene film, then tensile experiments were carried on under different loading rates. The strain rate sensitive properties of the composites were investigated, and the feasibility of the Burgers model fitting to predict the constitutive relation of the material was analyzed. The results show that the GF/PP composite in the low strain rates is sensitive to strain rate, with the increase of strain rate, the fracture stress and tensile strength increase, and with the increase of the glass fiber content, the strain rate effect decreases. Meanwhile, the Burgers model can effectively fit to predict the tensile stress-strain curves of the composites, then compared with the experimental curves, which further validates the strain rate sensitive properties of the GF/PP composites and its trend.

Key wordslow strain rate    glass fiber    polypropylene    Burgers model    strain rate sensitive property
收稿日期: 2015-03-14      出版日期: 2018-04-14
中图分类号:  TB332  
基金资助:湖南大学汽车车身先进设计制造国家重点实验室开放基金(31115014);湖南省自然科学基金(12JJ9017)
通讯作者: 杨旭静     E-mail: yangxujing@hnu.edu.cn
作者简介: 杨旭静(1969-), 男, 博士, 教授, 主要从事汽车覆盖件冲压工艺设计、仿真与优化、汽车复合材料工艺与装备技术、模具设计制造及数控加工技术方面研究工作, 联系地址:湖南省长沙市湖南大学机械与运载工程学院(410082), E-mail:yangxujing@hnu.edu.cn
引用本文:   
鲁雄, 杨旭静, 段书用, 郑娟. 玻纤增强聚丙烯复合材料的应变率敏感特性[J]. 材料工程, 2018, 46(4): 146-151.
Xiong LU, Xu-jing YANG, Shu-yong DUAN, Juan ZHENG. Strain Rate Sensitive Properties of Glass Fiber Reinforced Polypropylene Composites. Journal of Materials Engineering, 2018, 46(4): 146-151.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000282      或      http://jme.biam.ac.cn/CN/Y2018/V46/I4/146
Material Density/(g·cm-3) Mass/(g·m-2) Dimension
Polypropylene resin film 0.91 770 265mm×280mm
Glass fiber mat 2.54 760 285mm×300mm
Table 1  材料参数
Category Mass fraction of GF/% Mass/(g·m-2) Thickness/mm Dimension
1 0 820 0.9 280mm×280mm
2 10 5380 4.9 280mm×280mm
3 20 3860 3.5 280mm×280mm
4 35 2340 2.1 280mm×280mm
Table 2  板材参数
Fig.1  拉伸试样
(a)尺寸图;(b)拉伸实体图
Category Mass fractionof GF/% Loading speed/(mm·min-1) Scale distance/mm Strain rate/s-1
1 0 0.3 50 10-4
2 0 1.5 50 5×10-4
3 0 7.5 50 2.5×10-3
4 0 37.5 50 1.25×10-2
5 10 0.3 50 10-4
6 10 1.5 50 5×10-4
7 10 7.5 50 2.5×10-3
8 10 37.5 50 1.25×10-2
9 20 0.3 50 10-4
10 20 1.5 50 5×10-4
11 20 7.5 50 2.5×10-3
12 20 37.5 50 1.25×10-2
13 35 0.3 50 10-4
14 35 1.5 50 5×10-4
15 35 7.5 50 2.5×10-3
16 35 37.5 50 1.25×10-2
Table 3  拉伸试样参数
Fig.2  4种玻纤增强聚丙烯复合材料应力-应变曲线图
(a)玻纤质量分数0%;(b)玻纤质量分数10%;(c)玻纤质量分数20%;(d)玻纤质量分数35%
Fig.3  Burgers模型
Category wi E1/MPa E3/MPa η2/(mPa·s) η3/(mPa·s)
1 1/35 2642.95 1520.81 104246.00 21223595.41
2 1/35 2875.91 1186.41 19283.79 3558800.98
3 1/35 2999.96 1701.03 4229.31 1279302.86
4 1/35 3000.25 1681.82 721.50 276417.71
Table 4  X向量
Fig.4  Burgers模型拟合与实验应力-应变曲线对比图
(a) =10-4s-1;(b)=5×10-4s-1;(c)=2.5×10-3s-1;(d)=1.25×10-2s-1
1 张晓明, 刘雄亚. 纤维增强热塑性复合材料及其应用[M]. 北京: 化学工业出版社, 2007: 6- 7.
1 ZHANG X M , LIU X Y . Fiber reinforced thermoplastic composites and application[M]. Beijing: Chemical Industry Press, 2007: 6- 7.
2 黄桥平, 赵桂平, 卢天健. 考虑应变率效应的复合材料层合板冲击动态响应[J]. 西安交通大学学报, 2009, 43 (1): 72- 76.
doi: 10.7652/xjtuxb200901016
2 HUANG Q P , ZHAO G P , LU T J . Dynamic response with strain rate dependence of composite laminates[J]. Journal of Xi'an Jiao tong University, 2009, 43 (1): 72- 76.
doi: 10.7652/xjtuxb200901016
3 LI Y X , LIN Z Q , JIANG A Q , et al. Experimental study of glass-fiber mat thermoplastic material impact properties and lightweight automobile body analysis[J]. Materials & Design, 2004, 25 (7): 579- 585.
4 张伟, 董升顺, 蒋建云, 等. 轻质GMT板材制备技术与发展现状[J]. 塑料工业, 2011, 39 (增刊1): 50- 52.
4 ZHANG W , DONG S S , JIANG J Y , et al. The preparation and development status of lightweight GMT sheet[J]. China Plastic Industry, 2011, 39 (Suppl 1): 50- 52.
5 HUFENBACH W , GUDE M , EBERT C . Hybrid 3D-textile reinforced composites with tailored property profiles for crash and impact applications[J]. Composites Science and Technology, 2009, 69 (9): 1422- 1426.
doi: 10.1016/j.compscitech.2008.09.033
6 EBERT C, LANGKAMP A, GUDE M, et al. Characterization and simulation of the strain-rate dependent material behaviour of novel 3D textile-reinforced composites[C]//13th European Conference on Composite Materials (ECCM-13). Stockholm, Sweden: European Conference on Composite Materials, 2008: 2-5.
7 HARTL A M , JERABEK M , LANG R W . Effect of fiber orientation, stress state and notch radius on the impact properties of short glass fiber reinforced polypropylene[J]. Polymer Testing, 2015, 43, 1- 9.
doi: 10.1016/j.polymertesting.2015.01.020
8 付顺强, 汪洋, 王宇. 聚碳酸酯的高应变率拉伸实验[J]. 实验力学, 2009, 24 (3): 202- 206.
8 FU S Q , WANG Y , WANG Y . High strain-rate tensile experiment on polycarbonate bar[J]. Journal of Experimental Mechanics, 2009, 24 (3): 202- 206.
9 漆露霖, 成艾国, 赵敏, 等. 应变率效应对整车侧碰仿真的影响研究[J]. 计算机应用与软件, 2011, 28 (8): 100- 102.
9 QI L L , CHENG A G , ZHAO M , et al. Study on the effect of strain rate on the analysis of side impact[J]. Computer Applications and Software, 2011, 28 (8): 100- 102.
10 于水生, 卢玉斌, 蔡勇. 工程材料的应变率效应及其统一模型[J]. 固体力学学报, 2013, 33 (增刊1): 63- 68.
10 YU S S , LU Y B , CAI Y . The strain-rate effect of engineering materials and its unified model[J]. Chinese Journal of Solid Mechanics, 2013, 33 (Suppl 1): 63- 68.
11 HUFENBACH W, LANGKAMP A, HORNIG A, et al. Experimental determination of the strain rate dependent out-of-plane shear properties of textile-reinforced composites[C]//17th International Conference on Composite Materials (ICCM-17). Edinburgh, UK: European Conference on Composite Materials, 2009: 27-31.
12 王国春, 成艾国, 高晖, 等. 材料应变率对汽车碰撞性能的影响研究[J]. 汽车工程, 2010, 32 (6): 482- 485.
12 WANG G C , CHENG A G , GAO H , et al. A study on the effect of strain rate on the crashworthiness of vehicle[J]. Automotive Engineering, 2010, 32 (6): 482- 485.
13 EBERT C , HUFENBACH W , LANGKAMP A , et al. Modelling of strain rate dependent deformation behavior of polypropylene[J]. Polymer Testing, 2011, 30 (2): 183- 187.
doi: 10.1016/j.polymertesting.2010.11.011
14 孙紫建, 王礼立. 高应变率大变形下的聚丙烯/尼龙共混高聚物损伤型本构特性[J]. 爆炸与冲击, 2006, 26 (6): 492- 497.
doi: 10.11883/1001-1455(2006)06-0492-06
14 SUN Z J , WANG L L . The constitutive behavior of PP/PA polymer blends taking account of damage evolution at high strain rate and large deformation[J]. Explosion and Shock Waves, 2006, 26 (6): 492- 497.
doi: 10.11883/1001-1455(2006)06-0492-06
15 魏桂耀, 王转, 蔡长安. 聚丙烯(PP)材料在不同应变速率下的缺口敏感性实验研究[J]. 贵州工业大学学报(自然科学版), 2007, 36 (2): 1- 5.
15 WEI G Y , WANG Z , CAI C A . Experimental study on the notch sensitivity of polypropylene (PP) under different strain rates[J]. Journal of Guizhou University of Technology (Natural Science Edition), 2007, 36 (2): 1- 5.
16 曾智, 李玉龙, 郭亚洲, 等. 两种典型铺层玻璃纤维复合材料的拉伸力学行为[J]. 航空材料学报, 2013, 33 (3): 74- 80.
16 ZENG Z , LI Y L , GUO Y Z , et al. Tension mechanical behavior of two angle-ply of glass-fiber reinforced composites[J]. Journal of Aeronautical Materials, 2013, 33 (3): 74- 80.
17 刘义同. 热粘弹性理论[M]. 天津: 天津大学出版社, 2002: 8- 10.
17 LIU Y T . Theory of thermo-viscoelasticity[M]. Tianjin: Tianjin University Press, 2002: 8- 10.
[1] 龚小龙, 樊自田, 胡胜利, 杨致远, 刘富初, 蒋文明. 玻璃纤维增强KNO3基水溶性盐芯的组织与性能[J]. 材料工程, 2021, 49(2): 73-78.
[2] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[3] 徐建林, 刘晓琦, 杨文龙, 牛磊, 赵金强. Nano-Sb2O3/BEO/PP复合材料阻燃性能[J]. 材料工程, 2019, 47(1): 84-90.
[4] 曾少华, 申明霞, 段鹏鹏, 郑鸿奎, 王珠银. 碳纳米管-玻璃纤维织物增强环氧复合材料的结构与性能[J]. 材料工程, 2017, 45(9): 38-44.
[5] 陈菁, 顾轶卓, 杨中甲, 李敏, 王绍凯, 张佐光. 高温处理对几种玄武岩纤维成分和拉伸性能的影响[J]. 材料工程, 2017, 45(6): 61-66.
[6] 雷帅, 张校, 钟珊, 刘正博, 曹维宇, 徐樑华. 聚丙烯腈热稳定化纤维的裂解行为[J]. 材料工程, 2017, 45(5): 59-63.
[7] 何聪, 欧宝立, 李政峰. 氧化石墨烯对聚丙烯/尼龙6两组分聚合物的增容作用[J]. 材料工程, 2017, 45(3): 13-16.
[8] 何跃, 蒋团辉, 刘阳夫, 龚维, 何力. 橡胶粒子对微发泡聚丙烯复合材料发泡行为与力学性能的影响[J]. 材料工程, 2017, 45(2): 80-87.
[9] 刘伯威, 李亚林, 刘咏, 杨阳, 唐兵, 匡湘铭. 聚丙烯腈纤维对汽车摩擦材料性能的影响[J]. 材料工程, 2017, 45(10): 103-110.
[10] 马海焦, 刘向东, 吕凯, 张慧, 孟山旦. 含短切玻璃纤维的水玻璃精铸涂料的流变性[J]. 材料工程, 2016, 44(8): 93-97.
[11] 钱金鑫, 李明愉, 冯长根. 亚胺基二乙酸螯合纤维的合成与性能研究[J]. 材料工程, 2016, 44(7): 54-60.
[12] 黄海滨, 马敬环, 赵孔银, 郑海燕, 刘莹, 周晓峰. 聚丙烯酸/聚丙烯复合塑料的制备及其阻垢性能[J]. 材料工程, 2016, 44(2): 43-48.
[13] 王亚杰, 王波, 张龙, 马宏毅. 玻璃纤维-铝合金正交层板的拉伸性能研究[J]. 材料工程, 2015, 43(9): 60-65.
[14] 余煜玺, 吴晓云, 伞海生. 常压干燥制备疏水性SiO2-玻璃纤维复合气凝胶及表征[J]. 材料工程, 2015, 43(8): 31-36.
[15] 侯桂香, 谢建强, 姚少巍, 张翠云. PAN/插层高岭石复合材料制备及静电纺丝性能[J]. 材料工程, 2015, 43(10): 49-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn