Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (1): 74-82    DOI: 10.11868/j.issn.1001-4381.2015.000305
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
水蒸气温度对700℃先进超超临界锅炉候选合金GH2984氧化行为的影响
杨珍, 鲁金涛, 张夏妮, 赵新宝, 袁勇, 党莹樱, 尹宏飞, 谷月峰
西安热工研究院有限公司 电站清洁燃烧国家工程研究中心, 西安 710032
Effect of Steam Temperature on Oxidation Behavior of GH2984 Alloy as a Candidate for 700℃ Advanced Ultra-supercritical Boilers
YANG Zhen, LU Jin-tao, ZHANG Xia-ni, ZHAO Xin-bao, YUAN Yong, DANG Ying-ying, YIN Hong-fei, GU Yue-feng
National Engineering Research Center of Clean Coal Combustion for Utility Boilers, Xi'an Thermal Power Research Institute Co., Ltd., Xi'an 710032, China
全文: PDF(8701 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用X射线衍射仪、扫描电子显微镜对比研究GH2984合金在750℃和850℃纯水蒸气中的氧化行为。结果表明:GH2984合金的氧化动力学遵循抛物线规律;温度升高,Cr挥发加速,外氧化和内氧化的速率急剧增加,氧化膜的组成结构发生明显的变化。750℃时,合金表面形成单层致密的(Cr,Mn)2O3膜;温度升至850℃,氧化膜中空洞的数量大幅增加,氧化膜转变为由薄的外层Fe2TiO5和厚的次外层(Cr,Mn)2O3及薄的内层(Nb,Mo)2O5组成的三层结构。Ti,Al优先于晶界处发生内氧化,分别形成TiO2和Al2O3;两种内氧化产物的尺寸和数量均随温度升高而增加。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨珍
鲁金涛
张夏妮
赵新宝
袁勇
党莹樱
尹宏飞
谷月峰
关键词 GH2984高温合金先进超超临界燃煤电站水蒸气高温氧化    
Abstract:The oxidation behavior of GH2984 alloy in pure steam at 750℃ and 850℃ was investigated by using X-ray diffractometer (XRD) and scanning electron microscope equipped with energy dispersive spectra (SEM/EDS). Results show that GH2984 alloy is oxidized parabolically with time. The temperature rising greatly promotes the external and internal oxidation and also the evaporation of Cr. The composition and microstructure of the oxide films change obviously. At 750℃, a compact and single-layered (Cr,Mn)2O3 film is formed on alloy surface; the number of voids in oxide scale increases at 850℃, whereas a three-layered oxide scale consisting of thin Fe2TiO5 outer layer and much thicker (Cr,Mn)2O3 middle layer and thinner (Nb,Mo)2O5 inner layer is formed at the elevated temperature. Ti and Al are internally oxidized preferentially along grain boundaries to be TiO2 and Al2O3, respectively; both the number and the size of the two internal oxides increase with the temperature rising.
Key wordsGH2984 superalloy    advanced ultra-supercritical coal-fired power plant    steam    high temperature oxidation
收稿日期: 2015-03-18      出版日期: 2018-01-18
中图分类号:  TG132.3  
通讯作者: 杨珍(1985-),女,博士,高级工程师,研究方向:金属的高温氧化,联系地址:陕西省西安市碑林区兴庆路136号西安热工研究院有限公司(710032),E-mail:janeyoungscience@gmail.com     E-mail: janeyoungscience@gmail.com
引用本文:   
杨珍, 鲁金涛, 张夏妮, 赵新宝, 袁勇, 党莹樱, 尹宏飞, 谷月峰. 水蒸气温度对700℃先进超超临界锅炉候选合金GH2984氧化行为的影响[J]. 材料工程, 2018, 46(1): 74-82.
YANG Zhen, LU Jin-tao, ZHANG Xia-ni, ZHAO Xin-bao, YUAN Yong, DANG Ying-ying, YIN Hong-fei, GU Yue-feng. Effect of Steam Temperature on Oxidation Behavior of GH2984 Alloy as a Candidate for 700℃ Advanced Ultra-supercritical Boilers. Journal of Materials Engineering, 2018, 46(1): 74-82.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000305      或      http://jme.biam.ac.cn/CN/Y2018/V46/I1/74
[1] VISWANATHAN R, HENRY J F, TANZOSH J, et al. US program on materials technology for ultra-supercritical coal power plants[J]. Journal of Materials Engineering and Performance, 2005, 14(3):281-292.
[2] 徐炯, 周一工. 700℃高效超超临界火力发电技术发展的概述[J]. 上海电气技术,2012, 5(2):50-54. XU J, ZHOU Y G. Overreview of the development of 700℃ USC technique[J]. Journal of Shanghai Electric Technology, 2012, 5(2):50-54.
[3] 曾莉,王岩,李莎,等. 700℃超超临界锅炉材料GH4700镍基合金组织演变研究[J]. 材料工程, 2013(9):44-47. ZENG L, WANG Y, LI S, et al. Microstructure evolution of GH4700 superalloy for 700℃ ultra-supercritical boilers[J]. Journal of Materials Engineering, 2013(9):44-47.
[4] CHI C Y, YU H Y, XIE X S. Advanced austenitic heat-resistant steels for ultra-super-critical (USC) fossil power plants[M]. Rijeka, Croatia:INTECH Open Access Publisher, 2011:171-200.
[5] GIBBONS T B. Recent advances in steels for coal fired power plant:a review[J]. Transactions of the Indian Institute of Metals, 2013, 66(5/6):631-640.
[6] 方旭东,王岩,范光伟,等. 超超临界锅炉材料TP310HCbN(HR3C)持久及析出行为[J]. 材料工程, 2017, 45(6):112-117. FANG X D, WANG Y, FAN G W, et al. Stress rupture and precipitation behavior of TP310HCbN (HR3C) for supercritical boilers[J]. Journal of Materials Engineering, 2017, 45(6):112-117.
[7] TERRY C T, REN W J. Procurement and initial characterization of alloy 230 and CMS alloy 617[R]. Idaho, US:Idaho National Laboratory, 2006:1-8.
[8] COWEN C J, DANIELSON P E, JABLONSKI P D. The microstructural evolution of Inconel alloy 740 during solution treatment, aging, and exposure at 760℃[J]. Journal of Materials Engineering and Performance, 2011, 20(6):1078-1083.
[9] ZHANG S D, TAKAHASHI Y. Advances in materials technology for fossil power plants[C]. Hawaii, US:ASM International, 2013:242-253.
[10] 王淑荷,杜秀魁,郭建亭. GH984合金中碳化物在长期时效过程中的变化[J]. 金属热处理学报, 1998, 19(3):36-41. WANG S H, DU X K, GUO J T. Changes of carbides during long term aging in GH984 alloy[J]. Transactions of Metal Heat Treatment, 1998, 19(3):36-41.
[11] 郭建亭, 杜秀魁. 一种性能优异的过热器管材用高温合金GH2984[J]. 金属学报, 2005, 41(11):1221-1227. GUO J T, DU X K. A superheater tube superalloy GH2984 with excellent properties[J]. Acta Metallurgica Sinica, 2005, 41(11):1221-1227.
[12] 郭建亭. 高温合金在能源工业领域中的应用现状及发展[J]. 金属学报, 2010, 46(5):513-527. GUO J T. The current situation of application and development of superalloys in the fields of energy industry[J]. Acta Metallurgica Sinica, 2010, 46(5):513-527.
[13] PENG X, YAN J, ZHOU Y, et al. Effect of grain refinement on the resistance of 304 stainless steel to breakaway oxidation in wet air[J]. Acta Materialia, 2005, 53(19):5079-5088.
[14] YOUNG D J. Effects of water vapour on the oxidation of chromia formers[J]. Materials Science Forum, 2008, 595/598:1189-1197.
[15] OTHMAN N K, OTHMAN N, ZHANG J, et al. Effects of water vapour on isothermal oxidation of chromia-forming alloys in Ar/O2 and Ar/H2 atmospheres[J]. Corrosion Science, 2009, 51(12):3039-3049.
[16] ASTEMAN H, SVENSSON J E, JOHANSSON L G. Evidence for chromium evaporation influencing the oxidation of 304L:the effect of temperature and flow rate[J]. Oxidation of Metals, 2002, 57(3/4):193-216.
[17] 杨珍,鲁金涛,谷月峰. 高温合金GH2984在750℃水蒸气中的氧化行为研究[J]. 稀有金属材料与工程, 2017, 46(4):1013-1019. YANG Z, LU J T, GU Y F. Oxidation mechanism of GH2984 alloy in pure steam at 750℃[J]. Rare Metal Materials and Engineering, 2017, 46(4):1013-1019.
[18] TALLMAN R L, GULBRANSEN E A. Dislocation and grain boundary diffusion in the growth of α-Fe2O3 whiskers and twinned platelets peculiar to gaseous oxidation[J]. Nature, 1968, 218(5146):1046-1047.
[19] VOSS D A, BULTER E P, MITCHELL T E. The growth of hematite blades during the high temperature oxidation of iron[J]. Metallurgical Transactions A, 1982, 13(5):929-935.
[20] HANSEL M, QUADAKKERS W, YOUNG D. Role of water vapor in chromia-scale growth at low oxygen partial pressure[J]. Oxidation of Metals, 2003, 59(3/4):285-301.
[21] PUJILAKSONO B, JONSSON T, HALVARSSON M, et al. Paralinear oxidation of chromium in O2+H2O environment at 600-700℃[J]. Oxidation of Metals, 2008, 70(3/4):163-188.
[22] TEDMON C. The effect of oxide volatilization on the oxidation kinetics of Cr and Fe-Cr alloys[J]. Journal of the Electrochemical Society, 1966, 113(8):766-768.
[23] GRAHAM H C, DAVIS H. Oxidation/vaporization kinetics of Cr2O3[J]. Journal of the American Ceramic Society, 1971, 54(2):89-93.
[24] HOLCOMB G R. Calculation of reactive-evaporation rates of chromia[J]. Oxidation of Metals, 2008, 69(3/4):163-180.
[25] BARIN I. Thermochemical data of pure substances[M]. Weinheim, Germany:VCH Verlagsgesellschaft mbH, 2003.
[26] 李美栓. 金属的高温腐蚀[M]. 北京:冶金工业出版社, 2001. LI M S. High temperature corrosion of metals[M]. Beijing:Metallurgical Industry Press, 2001.
[27] KOFSTAD P. High temperature corrosion[M]. London/New York:Elsevier Applied Science, 1988.
[28] SPEIDEL D, MUAN A. The system manganese oxide-Cr2O3 in air[J]. Journal of the American Ceramic Society, 1963, 46(12):577-578.
[29] KJELLQVIST L, SELLEBY M. Thermodynamic assessment of the Cr-Mn-O system[J]. Journal of Alloys and Compounds, 2010, 507(1):84-92.
[30] HENRY S, MOUGIN J, WOUTERS Y, et al. Characterization of chromia scales grown on pure chromium in different oxidizing atmospheres[J]. Materials at High Temperatures, 2000, 17(2):231-234.
[31] WAGNER C. Reaktionstypen bei der oxydation von legierungen[J]. Zeitschrift für Elektrochemie, 1959, 63(7):772-782.
[32] DOUGLASS D L. A critique of internal oxidation in alloys during the post-wagner era[J]. Oxidation of Metals, 1995, 44(1/2):81-111.
[33] AUER S, FRENKEL D. Prediction of absolute crystal-nucleation rate in hard-sphere colloids[J]. Nature, 2001, 409(6823):1020-1023.
[1] 毛杰, 马景涛, 邓畅光, 邓春明, 宋进兵, 刘敏, 宋鹏. 表面粗糙度对PS-PVD YSZ陶瓷层性能的影响[J]. 材料工程, 2020, 48(5): 144-150.
[2] 赵建玲, 马晨雨, 李建强, 李晓禹. 基于全光谱太阳光利用的光热转换材料研究进展[J]. 材料工程, 2019, 47(6): 11-19.
[3] 黄祖江, 蒋智秋, 董婉冰, 童庆, 李伟洲. 微弧氧化及包埋渗铝法制备的复合涂层高温抗蚀性能[J]. 材料工程, 2018, 46(1): 44-52.
[4] 王逸群, 宋鹏, 季强, 廖红星, 陆建生. H2O和Y(O)对NiCoCrAl热障涂层高温氧化的影响[J]. 材料工程, 2017, 45(4): 65-69.
[5] 戴景杰, 张丰云, 王阿敏, 陈传忠, 翁飞. Nb掺杂对Ti-Al合金化层抗高温氧化性能的影响[J]. 材料工程, 2017, 45(2): 24-31.
[6] 张林伟, 王鲁, 王全胜, 陆磊, 宁先进. 冷喷涂CoNiCrAlY涂层在Na2SO4熔盐中的热腐蚀行为[J]. 材料工程, 2016, 44(11): 45-50.
[7] 贺世美, 熊翔, 何利民. 新型Yb2SiO5环境障涂层1400℃高温氧化行为[J]. 材料工程, 2015, 43(4): 37-41.
[8] 齐红宇, 马立强, 李少林, 杨晓光, 王亚梅, 魏洪亮. 等离子热障涂层构件高温热疲劳寿命预测研究[J]. 材料工程, 2014, 0(7): 67-72.
[9] 耿波, 张路, 范念青, 夏志新, 刘江南. 水蒸气温度和流量对T91钢氧化行为的影响[J]. 材料工程, 2014, 0(1): 52-57.
[10] 任保轶, 王思林, 刘子儒, 张学军. 表面制备SiO2涂层的Ti2AlNb基合金高温氧化激活能研究[J]. 材料工程, 2013, 0(7): 6-10.
[11] 贺世美, 牟仁德, 许振华, 何利民, 黄光宏. Si/3Al2O3·2SiO2+BSAS/Yb2SiO5环境障涂层1300℃抗水蒸气性能研究[J]. 材料工程, 2011, 0(7): 34-38,43.
[12] 张鹏飞, 李建平, 蔡妍, 陆峰. 电弧离子镀AlYSi涂层抗高温氧化性能研究[J]. 材料工程, 2011, 0(1): 76-80.
[13] 马世宁, 罗林, 刘谦, 邱骥. 不同介质水蒸气等离子弧焊接7A52铝合金接头组织性能研究[J]. 材料工程, 2010, 0(4): 36-41.
[14] 贺定勇, 王晓芳, 崔丽, 蒋建敏, 李晓延. 铬含量对铁基涂层抗高温氧化性能的影响[J]. 材料工程, 2009, 0(8): 24-27.
[15] 王东生, 田宗军, 陈志勇, 沈理达, 刘志东, 黄因慧. TiAl合金表面激光重熔等离子喷涂MCrAlY涂层研究[J]. 材料工程, 2009, 0(7): 72-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn