Effect of Steam Temperature on Oxidation Behavior of GH2984 Alloy as a Candidate for 700℃ Advanced Ultra-supercritical Boilers
YANG Zhen, LU Jin-tao, ZHANG Xia-ni, ZHAO Xin-bao, YUAN Yong, DANG Ying-ying, YIN Hong-fei, GU Yue-feng
National Engineering Research Center of Clean Coal Combustion for Utility Boilers, Xi'an Thermal Power Research Institute Co., Ltd., Xi'an 710032, China
Abstract:The oxidation behavior of GH2984 alloy in pure steam at 750℃ and 850℃ was investigated by using X-ray diffractometer (XRD) and scanning electron microscope equipped with energy dispersive spectra (SEM/EDS). Results show that GH2984 alloy is oxidized parabolically with time. The temperature rising greatly promotes the external and internal oxidation and also the evaporation of Cr. The composition and microstructure of the oxide films change obviously. At 750℃, a compact and single-layered (Cr,Mn)2O3 film is formed on alloy surface; the number of voids in oxide scale increases at 850℃, whereas a three-layered oxide scale consisting of thin Fe2TiO5 outer layer and much thicker (Cr,Mn)2O3 middle layer and thinner (Nb,Mo)2O5 inner layer is formed at the elevated temperature. Ti and Al are internally oxidized preferentially along grain boundaries to be TiO2 and Al2O3, respectively; both the number and the size of the two internal oxides increase with the temperature rising.
[1] VISWANATHAN R, HENRY J F, TANZOSH J, et al. US program on materials technology for ultra-supercritical coal power plants[J]. Journal of Materials Engineering and Performance, 2005, 14(3):281-292.
[2] 徐炯, 周一工. 700℃高效超超临界火力发电技术发展的概述[J]. 上海电气技术,2012, 5(2):50-54. XU J, ZHOU Y G. Overreview of the development of 700℃ USC technique[J]. Journal of Shanghai Electric Technology, 2012, 5(2):50-54.
[3] 曾莉,王岩,李莎,等. 700℃超超临界锅炉材料GH4700镍基合金组织演变研究[J]. 材料工程, 2013(9):44-47. ZENG L, WANG Y, LI S, et al. Microstructure evolution of GH4700 superalloy for 700℃ ultra-supercritical boilers[J]. Journal of Materials Engineering, 2013(9):44-47.
[4] CHI C Y, YU H Y, XIE X S. Advanced austenitic heat-resistant steels for ultra-super-critical (USC) fossil power plants[M]. Rijeka, Croatia:INTECH Open Access Publisher, 2011:171-200.
[5] GIBBONS T B. Recent advances in steels for coal fired power plant:a review[J]. Transactions of the Indian Institute of Metals, 2013, 66(5/6):631-640.
[6] 方旭东,王岩,范光伟,等. 超超临界锅炉材料TP310HCbN(HR3C)持久及析出行为[J]. 材料工程, 2017, 45(6):112-117. FANG X D, WANG Y, FAN G W, et al. Stress rupture and precipitation behavior of TP310HCbN (HR3C) for supercritical boilers[J]. Journal of Materials Engineering, 2017, 45(6):112-117.
[7] TERRY C T, REN W J. Procurement and initial characterization of alloy 230 and CMS alloy 617[R]. Idaho, US:Idaho National Laboratory, 2006:1-8.
[8] COWEN C J, DANIELSON P E, JABLONSKI P D. The microstructural evolution of Inconel alloy 740 during solution treatment, aging, and exposure at 760℃[J]. Journal of Materials Engineering and Performance, 2011, 20(6):1078-1083.
[9] ZHANG S D, TAKAHASHI Y. Advances in materials technology for fossil power plants[C]. Hawaii, US:ASM International, 2013:242-253.
[10] 王淑荷,杜秀魁,郭建亭. GH984合金中碳化物在长期时效过程中的变化[J]. 金属热处理学报, 1998, 19(3):36-41. WANG S H, DU X K, GUO J T. Changes of carbides during long term aging in GH984 alloy[J]. Transactions of Metal Heat Treatment, 1998, 19(3):36-41.
[11] 郭建亭, 杜秀魁. 一种性能优异的过热器管材用高温合金GH2984[J]. 金属学报, 2005, 41(11):1221-1227. GUO J T, DU X K. A superheater tube superalloy GH2984 with excellent properties[J]. Acta Metallurgica Sinica, 2005, 41(11):1221-1227.
[12] 郭建亭. 高温合金在能源工业领域中的应用现状及发展[J]. 金属学报, 2010, 46(5):513-527. GUO J T. The current situation of application and development of superalloys in the fields of energy industry[J]. Acta Metallurgica Sinica, 2010, 46(5):513-527.
[13] PENG X, YAN J, ZHOU Y, et al. Effect of grain refinement on the resistance of 304 stainless steel to breakaway oxidation in wet air[J]. Acta Materialia, 2005, 53(19):5079-5088.
[14] YOUNG D J. Effects of water vapour on the oxidation of chromia formers[J]. Materials Science Forum, 2008, 595/598:1189-1197.
[15] OTHMAN N K, OTHMAN N, ZHANG J, et al. Effects of water vapour on isothermal oxidation of chromia-forming alloys in Ar/O2 and Ar/H2 atmospheres[J]. Corrosion Science, 2009, 51(12):3039-3049.
[16] ASTEMAN H, SVENSSON J E, JOHANSSON L G. Evidence for chromium evaporation influencing the oxidation of 304L:the effect of temperature and flow rate[J]. Oxidation of Metals, 2002, 57(3/4):193-216.
[17] 杨珍,鲁金涛,谷月峰. 高温合金GH2984在750℃水蒸气中的氧化行为研究[J]. 稀有金属材料与工程, 2017, 46(4):1013-1019. YANG Z, LU J T, GU Y F. Oxidation mechanism of GH2984 alloy in pure steam at 750℃[J]. Rare Metal Materials and Engineering, 2017, 46(4):1013-1019.
[18] TALLMAN R L, GULBRANSEN E A. Dislocation and grain boundary diffusion in the growth of α-Fe2O3 whiskers and twinned platelets peculiar to gaseous oxidation[J]. Nature, 1968, 218(5146):1046-1047.
[19] VOSS D A, BULTER E P, MITCHELL T E. The growth of hematite blades during the high temperature oxidation of iron[J]. Metallurgical Transactions A, 1982, 13(5):929-935.
[20] HANSEL M, QUADAKKERS W, YOUNG D. Role of water vapor in chromia-scale growth at low oxygen partial pressure[J]. Oxidation of Metals, 2003, 59(3/4):285-301.
[21] PUJILAKSONO B, JONSSON T, HALVARSSON M, et al. Paralinear oxidation of chromium in O2+H2O environment at 600-700℃[J]. Oxidation of Metals, 2008, 70(3/4):163-188.
[22] TEDMON C. The effect of oxide volatilization on the oxidation kinetics of Cr and Fe-Cr alloys[J]. Journal of the Electrochemical Society, 1966, 113(8):766-768.
[23] GRAHAM H C, DAVIS H. Oxidation/vaporization kinetics of Cr2O3[J]. Journal of the American Ceramic Society, 1971, 54(2):89-93.
[24] HOLCOMB G R. Calculation of reactive-evaporation rates of chromia[J]. Oxidation of Metals, 2008, 69(3/4):163-180.
[25] BARIN I. Thermochemical data of pure substances[M]. Weinheim, Germany:VCH Verlagsgesellschaft mbH, 2003.
[26] 李美栓. 金属的高温腐蚀[M]. 北京:冶金工业出版社, 2001. LI M S. High temperature corrosion of metals[M]. Beijing:Metallurgical Industry Press, 2001.
[27] KOFSTAD P. High temperature corrosion[M]. London/New York:Elsevier Applied Science, 1988.
[28] SPEIDEL D, MUAN A. The system manganese oxide-Cr2O3 in air[J]. Journal of the American Ceramic Society, 1963, 46(12):577-578.
[29] KJELLQVIST L, SELLEBY M. Thermodynamic assessment of the Cr-Mn-O system[J]. Journal of Alloys and Compounds, 2010, 507(1):84-92.
[30] HENRY S, MOUGIN J, WOUTERS Y, et al. Characterization of chromia scales grown on pure chromium in different oxidizing atmospheres[J]. Materials at High Temperatures, 2000, 17(2):231-234.
[31] WAGNER C. Reaktionstypen bei der oxydation von legierungen[J]. Zeitschrift für Elektrochemie, 1959, 63(7):772-782.
[32] DOUGLASS D L. A critique of internal oxidation in alloys during the post-wagner era[J]. Oxidation of Metals, 1995, 44(1/2):81-111.
[33] AUER S, FRENKEL D. Prediction of absolute crystal-nucleation rate in hard-sphere colloids[J]. Nature, 2001, 409(6823):1020-1023.