Numerical Simulation of Columnar Crystal/Equiaxed Crystal Formation Model in a Convection Diffusion-multiphase Transformation System
HE Yin-hua1, WANG Fa-zhan1,2
1 College of Material and Mineral Resources, Xi'an University of Architecture and Technology, Xi'an 710055, China;
2 School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
Abstract:The horizontal rapid solidification of Fe-Bi-Mn free-cutting alloys were simulated by using diffusion-governed phase transformation kinetics. The three-dimensional solidification model for a convection diffusion-multiphase transformation system was built. Effects of alloys solidification on solid, liquid and gas phases flow diffusion transformation were considered. The Bi and MnS (free-cutting phases) of alloy columnar crystal/equiaxed crystal formation process were simulated. The results show that columnar crystal/equiaxed crystal formation model of Bi and MnS in alloy solidification is strongly influenced by convection diffusion and multiphase transformation terms; the large multiphase mass transfer rate and small enrichment degree of species easy to form columnar crystal where the convection diffusion term is positive; the small multiphase mass transfer rate and large enrichment degree of species appear at where the convection diffusion term is negative, the tip of columnar crystal breaking is caused by turbulence from convection diffusion and multiphase transformation when the species enriched to some degree, and which becomes the nucleation center of columnar crystal and the equiaxed crystal continues to grow and tends to be stable.
何银花, 王发展. 对流扩散-多相相变体系内柱状晶/等轴晶形成过程的数值模拟[J]. 材料工程, 2017, 45(6): 104-111.
HE Yin-hua, WANG Fa-zhan. Numerical Simulation of Columnar Crystal/Equiaxed Crystal Formation Model in a Convection Diffusion-multiphase Transformation System. Journal of Materials Engineering, 2017, 45(6): 104-111.
[1] MEHRABIAN R, KEANE M, FLEMINGS M C. Interdendritic fluid flow and macrosegregation; influence of gravity[J]. Metallurgical and Materials Transactions, 1970, 1(5):1209-1220.
[2] 邵媛媛, 杨平, 毛卫民. 电工钢中柱状晶热压缩时取向的变化及对析出的影响[J]. 材料工程, 2014, (10):75-81. SHAO Y Y, YANG P, MAO W M. Evolution of orientations and their influence on precipitation during hot compression of columnar-grained electrical steel[J]. Journal of Materials Engineering, 2014, (10):75-81.
[3] SCHNEIDER M C, GU J P, BECKERMANN C, et al. Modeling of micro-and macrosegregation and freckle formation in single-crystal nickel-base superalloy directional solidification[J]. Metallurgical and Materials Transactions A, 1997, 28(7):1517-1531.
[4] FELICELLI S D, POIRIER D R, HEINRICH J C. Macrosegregation patterns in multicomponent Ni-base alloys[J]. Journal of crystal growth, 1997, 177(1):145-161.
[5] 谭毅, 廖娇, 李佳艳, 等. 电子束熔炼Inconel 740合金不同热处理状态下的组织演变与显微硬度[J]. 材料工程, 2015, 43(4):19-24. TAN Y, LIAO J, LI J Y, et al. Microstructure evolution and microhardness of Inconel 740 alloy in different heat-treatment conditions prepared by electron beam melting[J]. Journal of Materials Engineering, 2015,43(4):19-24.
[6] COMBEAU H, DREZET J M, MO A, et al. Modeling of microsegregation in macrosegregation computations[J]. Metallurgical and Materials Transactions A, 1996, 27(8):2314-2327.
[7] MADISON J, SPOWART J, ROWENHORST D, et al. Modeling fluid flow in three-dimensional single crystal dendritic structures[J]. Acta Materialia, 2010, 58(8):2864-2875.
[8] 许正芳, 徐向俊, 林均品, 等. 热处理对大尺寸铸态高Nb-TiAl合金组织中S-偏析的影响[J]. 航空材料学报, 2007, 27(3):28-32. XU Z F, XU X J, LIN J P, et al. Effect of heat treatment on S-segregation of microstructure for as-cast high Nb containing TiAl alloy[J]. Journal of Aeronautical Materials, 2007, 27(3):28-32.
[9] WU M, LUDWIG A. Using a three-phase deterministic model for the columnar-to-equiaxed transition[J]. Metallurgical and Materials Transactions A, 2007, 38(7):1465-1475.
[10] 王哲, 王发展, 王欣, 等. Fe-Pb合金凝固多相体系内偏析形成过程的三维数值模拟[J]. 物理学报, 2014, 63(7):10103-10114. WANG Z, WANG F Z, WANG X, et al. Three-dimensional modelling of numerical simulation on segregation during Fe-Pb alloy solidification in a multiphase system[J]. Acta Physica Sinica, 2014, 63(7):10103-10114.
[11] 何银花, 王发展, 王哲, 等. Fe-0.03Te-0.3Bi-0.9Mn易切削不锈钢润滑滚动磨损机理研究[J]. 材料工程, 2015, 43(10):85-90. HE Y Y, WANG F Z, WANG Z, et al. Lubricated rolling wear mechanism study on Fe-0.03Te-0.3Pb-0.9Mn free-cutting stainless steel[J]. Journal of Materials Engineering, 2015, 43(10):85-90.
[12] MIRIHANAGE W U, DAI H, DONG H, et al. Computational modeling of columnar to equiaxed transition in alloy solidification[J]. Advanced Engineering Materials, 2013, 15(4):216-229.
[13] KARAGADDE S, BHATTACHARYA A, TOMAR G, et al. A coupled VOF-IBM-enthalpy approach for modeling motion and growth of equiaxed dendrites in a solidifying melt[J]. Journal of Computational Physics, 2012, 231(10):3987-4000.
[14] HUNT J D. Steady state columnar and equiaxed growth of dendrites and eutectic[J]. Materials Science and Engineering, 1984, 65(1):75-83.
[15] BECKERMANN C, WANG C Y. Equiaxed dendritic solidification with convection:part Ⅲ. Comparisons with NH4Cl-H2O experiments[J]. Metallurgical and Materials Transactions A, 1996, 27(9):2784-2795.
[16] RAPPAZ M, GANDIN C A. Probabilistic modelling of microstructure formation in solidification processes[J]. Acta Metallurgica et Materialia, 1993, 41(2):345-360.
[17] GANDIN C A, RAPPAZ M. A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes[J]. Acta Metallurgica et Materialia, 1994, 42(7):2233-2246.
[18] 李日, 王健, 周黎明, 等. 基于体积平均法模拟铸锭凝固过程的可靠性分析[J]. 物理学报, 2014, 63(12):8103-8111. LI R, WANG J, ZHOU L M, et al. The reliability analysis of using the volume averaging method to simulate the solidification process in a ingot[J]. Acta Physica Sinica, 2014, 63(12):8103-8111.
[19] 唐鹏钧, 何晓磊, 王兴元,等. 快速凝固/粉末冶金Al-20Si-7.5Ni-3Cu-1Mg-0.25Fe合金的显微组织与力学性能[J]. 航空材料学报, 2013, 33(3):12-17. TANG P J, HE X L, WANG X Y, et al. Microstructure and mechanical properties of Al-20Si-7.5Ni-3Cu-1Mg-0.25Fe alloy prepared by rapidly solidified powder metallurgy[J]. Journal of Aeronautical Materials, 2013, 33(3):12-17.
[20] KUMAR A, ZALO?NIK M, COMBEAU H. Study of the influence of mushy zone permeability laws on macro-and meso-segregations predictions[J]. International Journal of Thermal Sciences, 2012, 54:33-47.
[21] 周静怡, 赵文侠, 郑真,等. 硼含量对IC10高温合金凝固行为的影响[J]. 材料工程, 2014, (8):90-96. ZHOU J Y, ZHAO W X, ZHENG Z, et al. Effect of boron content on solidification behavior of IC10 superalloy[J]. Journal of Materials Engineering, 2014, (8):90-96.
[22] 王哲, 王发展, 何银花, 等. Fe-Bi-Mn三元合金多相相变-扩散体系中易切削相析出规律的数值研究[J]. 金属学报, 2014, 50(11):1393-1401. WANG Z, WANG F Z, HE Y H, et al. Numerical study on free-cutting phase precipitation behavior in Fe-Bi-Mn ternary alloy multiphase transformation-diffusion system[J]. Acta Metallurgica Sinica, 2014, 50(11):1393-1401.
[23] ZALO?NIK M, COMBEAU H. Thermosolutal flow in steel ingots and the formation of mesosegregates[J]. International Journal of Thermal Sciences, 2010, 49(9):1500-1509.
[24] LI J, WU M, HAO J, et al. Simulation of channel segregation using a two-phase columnar solidification model-part Ⅱ:Mechanism and parameter study[J]. Computational Materials Science, 2012, 55:419-429.