Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (4): 15-20    DOI: 10.11868/j.issn.1001-4381.2015.000401
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
高纯铝多向锻造大塑性变形过程的数值模拟及实验研究
朱庆丰, 张扬, 朱成, 班春燕, 崔建忠
东北大学 材料电磁过程研究教育部重点实验室, 沈阳 110819
Numerical Simulation and Experimental Investigation on Multi-direction Forging Behaviors of High Purity Aluminum
ZHU Qing-feng, ZHANG Yang, ZHU Cheng, BAN Chun-yan, CUI Jian-zhong
The Key Laboratory of Electromagnetic Processing of Materials(Ministry of Education), Northeastern University, Shenyang 110819, China
全文: PDF(5326 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用多向锻造的方法研究室温下锻造道次对高纯铝组织的影响,并用三维DEFORM软件对实验过程进行模拟。结果表明:经3次多向锻造后,高纯铝试样横截面上形成1个X形的细晶区及4个粗晶区,随锻造道次增至9,细晶区的面积不断扩大,粗晶区的面积不断缩小,但细晶区与粗晶区的晶粒尺寸差异并未消除。当高纯铝试样心部的等效应变量达到2.5时,心部再结晶晶粒尺寸达到70μm,继续增加心部的等效应变至6.0,心部的晶粒不再随等效应变量的增加而细化,达到晶粒细化的极限。而当试样边部难变形区和自由变形区的等效应变量增至4.0时, 其再结晶晶粒仍随等效应变量的增加而细化,未达到晶粒细化极限。这表明局部等效应变量及局部变形方式均是影响高纯铝晶粒细化的重要因素。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱庆丰
张扬
朱成
班春燕
崔建忠
关键词 多向锻造高纯铝组织均匀性数值模拟    
Abstract:The effect of forging pass on the deformation structure of high purity aluminum at room temperature during multi-direction forging process was investigated by experiment. The multi-direction forging process was analyzed by using software of DEFORM-3D. The results show that an X-shape fine grain zone (in the center of the sample) and four coarse grain zones (near the end surface of the sample) are initially formed on the cross section of the sample as forging passes increase to 3. With a further increasing the passes to 9, this X-shape zone tends to spread the whole sample. However, the grain difference between the coarse grain zone and fine grain zone still exists on the sample forged by 9 passes. Limitation in the structural refinement is observed in the center of the sample with the increment of equivalent strain. The grains size in the center is refined to a certain size (about 70μm) as equivalent strain reaches 2.5, and no further grain refinement in the center with increasing the equivalent strain to 6.0. However, the grains size in the area near the surface is continuously refined with the increasing the equivalent strain to 4.0. This indicates that the local deformation state and the equivalent strain are two important factors that affect the grain size.
Key wordsmulti-directional forging    high purity aluminum    structure uniformity    numerical simulation
收稿日期: 2015-04-10      出版日期: 2017-04-17
中图分类号:  TG146.21  
通讯作者: 朱庆丰(1979-),男,副教授,博士,从事铝合金的制备工艺及相关理论方面的研究工作,联系地址:辽宁省沈阳市和平区文化路3-11东北大学314信箱(110819),E-mail:zhuqingfeng@epm.neu.edu.cn     E-mail: zhuqingfeng@epm.neu.edu.cn
引用本文:   
朱庆丰, 张扬, 朱成, 班春燕, 崔建忠. 高纯铝多向锻造大塑性变形过程的数值模拟及实验研究[J]. 材料工程, 2017, 45(4): 15-20.
ZHU Qing-feng, ZHANG Yang, ZHU Cheng, BAN Chun-yan, CUI Jian-zhong. Numerical Simulation and Experimental Investigation on Multi-direction Forging Behaviors of High Purity Aluminum. Journal of Materials Engineering, 2017, 45(4): 15-20.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000401      或      http://jme.biam.ac.cn/CN/Y2017/V45/I4/15
[1] RINGEVAL S,PIOT D,DESRAYAUD C,et al.Texture and microtexture development in an Al-3Mg-Sc(Zr) alloy deformed by triaxial forging[J].Acta Materialia,2006,54(11):3095-3105.
[2] SITDIKOV O,SAKAI T,GOLOBORODKO A,et al.Grain fragmentation in a coarse-grained 7475 Al alloy during hot deformation[J].Scripta Materialia,2004,51(2):175-179.
[3] LIU W C,CHEN M B,YUAN H.Evolution of microstructures in severely deformed AA 3104 aluminum alloy by multiple constrained compression[J].Materials Science and Engineering:A,2011,528(16-17):5405-5410.
[4] ZHU Q F,LI L,BAN C Y,et al.Structure uniformity and limits of grain refinement of high purity aluminum during multi-directional forging process at room temperature[J].Transactions of Nonferrous Metals Society of China,2014,24(5):1301-1306.
[5] VALIVIEV Z,ISLAMGALIEV K,ALEXANDROV V.Bulk nanostructured materials from severe plastic deformation[J].Progress in Materials Science,2000,45(2):103-189.
[6] IWAHASHI Y,HORITA Z,NEMOTO M,et al.An investigation of microstructural evolution during equal-channel angular pressing[J].Acta Materialia,1997,45(11):4733-4741.
[7] VALIEV R Z,LANGDON T G.Principles of equal-channel angular pressing as a processing tool for grain refinement[J].Progress in Materials Science,2006,51(7):881-981.
[8] ZHU R,WU Y J,JI W Q,et al.Cyclic softening of ultrafine-grained AZ31 magnesium alloy processed by equal-channel angular pressing[J].Materials Letters,2011,65(23):3593-3596.
[9] 任国成,赵国群.AZ31镁合金等通道转角挤压应变累积均匀性分析及组织性能研究[J].材料工程,2013,(10):13-18. REN G C,ZHAO G Q.Homogeneous deformation analysis and microstructure properties study of AZ31 magnesium alloy in multi-pass equal channel angular pressing[J].Journal of Materials Engineering,2013,(10):13-18.
[10] 何运斌,潘清林,刘晓艳,等.ECAP 法制备细晶ZK60 镁合金的微观组织与力学性能[J].材料工程,2011,(6):32-38. HE Y B,PAN Q L,LIU X Y,et al.Microstructure and mechanical properties of ZK60 magnesium alloy produced by equal channel angular pressing[J].Journal of Materials Engineering,2011,(6):32-38.
[11] VALIEV R Z,KRASILNIKOV N A,TSENEV N K.Plastic deformation of alloys with submicron-grained structure[J].Materials Science and Engineering:A,1991,137:35-40.
[12] MAZILKIN A A,STRAUMAL B B,BORODACHENKOVA M V,et al.Gradual softening of Al-Zn alloys during high-pressure torsion[J].Materials Letters,2012,84(10):63-65.
[13] SAITO Y,UTSUNOMIYA H,TSUJI N,et al.Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process[J].Acta Materialia,1999,47(2):579-583.
[14] TISUJI N,ITO Y,SAITO Y,et al.Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing[J].Scripta Materialia,2002,47(12):893-899.
[15] 周蕾,史庆南,王军丽,等.异步累积叠轧纯铜材的取向变化过程与力学性能[J].材料工程,2013,(3):38-41. ZHOU L,SHI Q N,WAMG J L,et al.Texture and mechanical properties of pure copper deformed by asymmetrical accumulative roll-bonding[J].Journal of Materials Engineering,2013,(3):38-41.
[16] SAKAI T,MIURA H,GOLOBORAODKO A,et al.Continuous dynamic recrystallization during the transient severe deformation of aluminum alloy 7475[J].Acta Materialia,2009,57(1):153-162.
[17] ANDREW C P,PAUL S C,THOMAS J H.High-purity aluminum sputter targets[P].European Patent:1444376B1,2010-10-06.
[1] 朱怀沈, 聂义宏, 赵帅, 王宝忠. 镍基617合金动态再结晶微观组织演变与预测[J]. 材料工程, 2018, 46(6): 80-87.
[2] 刘多, 刘景和, 周英豪, 宋晓国, 牛红伟, 冯吉才. 紫铜/Al2O3陶瓷/不锈钢复合结构钎焊接头残余应力研究[J]. 材料工程, 2018, 46(3): 61-66.
[3] 尹建成, 杨环, 刘英莉, 陈业高, 张八淇, 钟毅. 约束喷射沉积过程中雾化气流场的模拟研究[J]. 材料工程, 2018, 46(11): 102-109.
[4] 梁贤烨, 弭光宝, 李培杰, 曹京霞, 黄旭. 钛合金叶片燃烧后冷却过程的三维热流耦合数值模拟[J]. 材料工程, 2018, 46(10): 37-46.
[5] 卢玉章, 熊英, 彭建强, 申健, 郑伟, 张功, 谢光. 重型燃机定向结晶空心叶片凝固过程的实验与模拟[J]. 材料工程, 2018, 46(1): 8-15.
[6] 孙颖迪, 陈秋荣. AZ31镁合金管材挤压成型数值模拟与实验研究[J]. 材料工程, 2017, 45(6): 1-7.
[7] 赵福泽, 朱绍珍, 冯小辉, 杨院生. 高能超声分散纳米晶须的数值和物理模拟[J]. 材料工程, 2016, 44(7): 13-18.
[8] 陈平, 项欣, 李俊玲, 邵天敏, 刘光磊. 沟槽型织构摩擦学性能的数值模拟与实验研究[J]. 材料工程, 2016, 44(6): 31-37.
[9] 张敏, 徐蔼彦, 汪强, 李露露. Al-4%Cu凝固过程枝晶生长的数值模拟[J]. 材料工程, 2016, 44(6): 9-16.
[10] 卢玉章, 申健, 郑伟, 徐正国, 张功, 谢光. 单晶铸件凝固过程工艺优化的数值模拟[J]. 材料工程, 2016, 44(11): 1-8.
[11] 王宁, 李健, 关志军, 谭凯. 工艺参数对钼粉烧结体近等温包套锻造成形过程中应变的影响[J]. 材料工程, 2015, 43(6): 46-51.
[12] 傅田, 李文亚, 杨夏炜, 李锦锋, 高大路. 搅拌摩擦点焊技术及其研究现状[J]. 材料工程, 2015, 43(4): 102-114.
[13] 黄东男, 于洋, 李有来, 左壮壮. 复杂断面空心铝型材分流模挤压焊合过程金属流变行为分析[J]. 材料工程, 2014, 0(9): 68-75.
[14] 王国林, 刘高君, 王磊, 张铃欣. 轮胎胎面胶料共挤出成型的有限元仿真研究[J]. 材料工程, 2014, 0(2): 51-54.
[15] 强斌, 刘宇杰, 阚前华. 粘接界面泡沫铝夹芯板的三点弯曲失效数值模拟[J]. 材料工程, 2014, 0(11): 97-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn