Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (2): 12-16    DOI: 10.11868/j.issn.1001-4381.2015.000417
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Al2O3掺杂ZnO微米花对丙酮超高灵敏度和优异选择性
刘唱白1, 刘丽2, 刘星熠1
1 吉林大学 电子科学与工程学院, 长春 130012;
2 吉林大学 物理学院, 长春 130012
Ultrahigh Sensitivity and Excellent Selectivity of Al2O3-doped ZnO Micro-flowers to Acetone
LIU Chang-bai1, LIU Li2, LIU Xing-yi1
1 College of Electronic Science & Engineering, Jilin University, Changchun 130012, China;
2 College of Physics, Jilin University, Changchun 130012, China
全文: PDF(1757 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用水热合成技术,成功制备具有孔道的纯ZnO微米花和Al2O3掺杂的ZnO (Al2O3-ZnO)微米花。通过X射线衍射(XRD)、扫描电镜(SEM)、电子能谱(EDS)对样品的形貌和结构进行表征。利用所得的纯ZnO和Al2O3-ZnO样品制备气敏元件,并对其气敏特性进行研究。结果表明:在工作温度为260℃时,基于Al2O3-ZnO的气敏元件对100×10-6的丙酮气体的灵敏度约为82.8,约为同条件下基于纯ZnO的气敏元件对丙酮气体灵敏度(18.0)的4.6倍,其响应时间和恢复时间分别为3s和8s,是同条件下干扰气体中灵敏度最高的乙醇气体的灵敏度(26.2)的3.16倍,该元件具有优异的选择性,能成功区分具有相似性质的丙酮和乙醇。此外,Al2O3-ZnO器件可检测到0.25×10-6的丙酮气体,其灵敏度约为3.1。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘唱白
刘丽
刘星熠
关键词 水热法丙酮Al2O3-ZnO微米花气体传感器    
Abstract:Pore spaced pure ZnO and Al2O3-doped ZnO(Al2O3-ZnO) micro-flowers were successfully synthesized by hydrothermal method. The microstructure, morphology and components were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry (EDS), respectively. Gas sensors were made to investigate the gas sensing properties. The results reveal that the sensor based on Al2O3-ZnO shows a high sensitivity to acetone. The sensitivity is 82.8 to 100×10-6 acetone gas at 260℃, which is about 4.6 times larger than that of pure ZnO (18.0) at similar conditions. The response time and recovery time are about 3s and 8s, respectively. Al2O3-ZnO also shows an excellent selectivity. Its sensitivity to acetone is 3.16 times higher than that to ethanol, which has the highest sensitivity among interfering gases under the same conditions. Thus, Al2O3-ZnO sensors can successfully distinguish acetone and ethanol with similar properties. In addition, the lowest detection to acetone is about 0.25×10-6 with theresponse is about 3.1.
Key wordshydrothermal method    acetone    Al2O3-ZnO micro-flower    gas sensor
收稿日期: 2015-04-15      出版日期: 2017-02-23
中图分类号:  TQ174  
通讯作者: 刘丽(1968-),女,教授,博士,主要研究方向为微纳功能材料及传感器件,联系地址:吉林省长春市前进大街2699号吉林大学前卫南区李四光实验楼(130012),liwei99@jlu.edu.cn     E-mail: liwei99@jlu.edu.cn
引用本文:   
刘唱白, 刘丽, 刘星熠. Al2O3掺杂ZnO微米花对丙酮超高灵敏度和优异选择性[J]. 材料工程, 2017, 45(2): 12-16.
LIU Chang-bai, LIU Li, LIU Xing-yi. Ultrahigh Sensitivity and Excellent Selectivity of Al2O3-doped ZnO Micro-flowers to Acetone. Journal of Materials Engineering, 2017, 45(2): 12-16.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000417      或      http://jme.biam.ac.cn/CN/Y2017/V45/I2/12
[1] WANG C,WANG F F,FU X Q,et al.Adsorption-controlled transition of the electrical properties realized in Hematite (alpha-Fe2O3) nanorods ethanol sensing[J].Chinese Physics B,2011,20(5):050701.
[2] LI L M,DU Z F,WANG T H.Enhanced sensing properties of defect-controlled ZnO nanotetrapods arising from aluminum doping[J].Sensors and Actuators B:Chemical,2010,147(1):165-169.
[3] QI Q,ZHANG T,LIU L,et al.Improved NH3,C2H5OH,and CH3COCH3 sensing properties of SnO2 nanofibers by adding block copolymer P123[J].Sensors and Actuators B:Chemical,2009,141(1):174-178.
[4] ZHAO M G,WANG X C,CHENG J P,et al.Synthesis and ethanol sensing properties of Al-doped ZnO nanofibers[J].Current Applied Physics,2013,13(2):403-407.
[5] XU J Q,HAN J J,ZHANG Y,et al.Studies on alcohol sensing mechanism of ZnO based gas sensors[J].Sensors and Actuators B:Chemical,2008,132(1):334-339.
[6] GAO T,WANG T H.Synthesis and properties of multipod-shaped ZnO nanorods for gas-sensor applications[J].Applied Physics A,2005,80(7):1451-1454.
[7] BADADHE S S,MULLA I S.H2S gas sensitive indium-doped ZnO thin films:preparation and characterization[J].Sensors and Actuators B:Chemical,2009,143(1):164-170.
[8] ZHAO M G,WANG X C,NING L L,et al.Electrospun Cu-doped ZnO nanofibers for H2S sensing[J].Sensors and Actuators B:Chemical,2011,156(2):588-592.
[9] WEI S H,YU Y,ZHOU M H.CO gas sensing of Pd-doped ZnO nanofibers synthesized by electrospinning method[J].Materials Letters,2010,64(21):2284-2286.
[10] YU L M,FAN X H,CAO L,et al.Gas sensing enhancement of aluminum-doped ZnO nanovase structure with many gas facile diffusivity paths[J].Applied Surface Science,2013,265:108-113.
[11] CHO S,KIM D H,LEE B S,et al.Ethanol sensors based on ZnO nanotubes with controllable wall thickness via atomic layer deposition,an O2 plasma process and an annealing process[J].Sensors and Actuators B:Chemical,2012,162(1):300-306.
[12] JIA M J,SEIFERT A,BERGER M,et al.Hybrid mesoporous materials with a uniform ligand distribution:synthesis,characterization,and application in epoxidation catalysis[J].Chemistry of Materials,2004,16(5):877-882.
[13] LIU L,LIU C B,LI S C,et al.Honeycombed SnO2 with ultra sensitive properties to H2[J].Sensors and Actuators B:Chemical,2013,177(2):893-897.
[14] LIU Y L,LI G Z,MI R D,et al.An environment-benign method for the synthesis of p-NiO/n-ZnO heterostructure with excellent performance for gas sensing and photocatalysis[J].Sensors and Actuators B:Chemical,2014,191:537-544.
[15] KANG Y F,WANG L W,WANG Y S,et al.Construction and enhanced gas sensing performances of CuO-modified alpha-Fe2O3 hybrid hollow spheres[J].Sensors and Actuators B:Chemical,2013,177:570-576.
[16] YANG F,SU H,ZHU Y,et al.Bioinspired synthesis and gas-sensing performance of porous hierarchical alpha-Fe2O3/C nanocomposites[J].Scripta Materialia,2013,68(11):873-876.
[17] HUANG J R,SHI C C,FU G J,et al.Facile synthesis of porous ZnO microbelts and analysis of their gas-sensing property[J].Materials Chemistry and Physics,2014,144(3):343-348.
[18] LUO X J,LOU Z,WANG L L,et al.Fabrication of flower-like ZnO nanosheet and nanorod-assembled hierarchical structures and their enhanced performance in gas sensors[J].New Journal of Chemistry,2014,38(1):84-89.
[19] WEN W,WU J M,WANG Y D.Large-size porous ZnO flakes with superior gas-sensing performance[J].Applied Physics Letters,2012,100(26):262111.
[20] WANG Z J,LI Z Y,LIU L,et al.A novel alcohol detector based on ZrO2-doped SnO2 electrospun nanofibers[J].J Am Ceram Soc,2010,93(3):634-637.
[21] WANG D W,DU S S,ZHOU X,et al.Template-free synthesis and gas sensing properties of hierarchical hollow ZnO microspheres[J].Cryst Eng Comm,2013,15(37):7438-7442.
[1] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
[2] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[3] 焦华, 赵康, 石蕊, 马利宁, 卞铁荣, 汤玉斐. 羟基磷灰石纳米棒的水热制备及其晶体生长机理研究[J]. 材料工程, 2020, 48(1): 136-143.
[4] 李嘉俊, 刘磊, 卢玉晓, 孙之剑, 马蕾. 纳米Li2MnSiO4正极材料的高压水热法制备及其电化学特性[J]. 材料工程, 2019, 47(9): 108-115.
[5] 刘琳, 李莹, 鄂涛, 杨姝宜, 姜志刚, 许丽岩, 张天琪. 球状纳米二氧化钛/石墨烯复合材料的合成及导电性能[J]. 材料工程, 2019, 47(8): 97-102.
[6] 沈小群, 陈李, 李顺波, 徐溢. VOCs传感器敏感膜材料及敏感机理研究进展[J]. 材料工程, 2019, 47(11): 64-70.
[7] 阚侃, 王珏, 付东, Sementsov YURII, 宋美慧, 林雨斐, 史克英. Co3O4中空纳米球的可控制备及气敏性能[J]. 材料工程, 2019, 47(1): 50-57.
[8] 张相辉. La掺杂改性Bi2WO6纳米材料的制备及其光催化性能[J]. 材料工程, 2018, 46(11): 57-62.
[9] 武美荣, 魏智强, 武晓娟, 杨华, 姜金龙. Zn1-xMnxS稀磁半导体的合成与光学性能[J]. 材料工程, 2017, 45(7): 54-59.
[10] 齐美丽, 肖桂勇, 吕宇鹏. 氨基酸对水热合成羟基磷灰石纤维形貌的影响[J]. 材料工程, 2017, 45(5): 46-51.
[11] 邓城, 漆小鹏, 李倩, 尹从岭, 杨辉. 沉淀法与水热法合成载银羟基磷灰石及其抗菌性能[J]. 材料工程, 2017, 45(4): 113-120.
[12] 刘阳龙, 郑玉婴, 曹宁宁, 王翔. 水热法合成铁掺杂的硫化镉及光催化性能[J]. 材料工程, 2017, 45(10): 12-17.
[13] 王丹军, 申会东, 郭莉, 张洁, 付峰. 三维介孔Bi2WO6光催化剂的制备及无机离子对其光催化活性的影响[J]. 材料工程, 2016, 44(2): 8-16.
[14] 戚瑞琼, 李伟杰, 连虹, 史新伟, 姚宁. Zr2P2WO12/Fe-Ni复合材料的制备及其热膨胀性能研究[J]. 材料工程, 2016, 44(12): 61-66.
[15] 夏傲, 于婉茹, 谈国强. 葡萄糖对微波水热合成正极材料LiFePO4的结构和性能的影响[J]. 材料工程, 2016, 44(10): 68-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn