Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (7): 103-110    DOI: 10.11868/j.issn.1001-4381.2015.000488
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
18CrNiMo7-6合金钢的弯曲微动疲劳特性
申颜团1, 彭金方1, 徐志彪2, 刘建华1, 蔡振兵2, 朱旻昊1,2,*()
1 西南交通大学 牵引动力国家重点实验室, 成都 610031
2 西南交通大学 材料先进技术教育部重点实验室, 成都 610031
Bending Fretting Fatigue Characteristics of 18CrNiMo7-6 Alloy Steel
Yan-tuan SHEN1, Jin-fang PENG1, Zhi-biao XU2, Jian-hua LIU1, Zhen-bing CAI2, Min-hao ZHU1,2,*()
1 State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China
2 Key Laboratory of Advanced Technologies of Materials(Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
全文: PDF(4238 KB)   HTML ( 6 )  
输出: BibTeX | EndNote (RIS)      
摘要 

对18CrNiMo7-6合金钢进行弯曲微动疲劳实验,建立弯曲微动疲劳S-N曲线,并对实验结果进行分析。结果表明:该合金钢的弯曲微动疲劳S-N曲线不同于中碳钢材料,也不同于常规弯曲疲劳,而是呈"ε"型曲线特征。随着弯曲疲劳应力的增加,微动运行区域由部分滑移区向混合区和滑移区转变,损伤区的磨损机制以剥层、磨粒磨损和氧化磨损为主。在混合区内,裂纹最易萌生和扩展,且裂纹均萌生于材料接触区次表面。受接触应力和弯曲疲劳应力影响,弯曲微动疲劳裂纹的萌生和扩展可分为三个阶段:初期,在接触应力控制下,裂纹萌生于次表面;随后,裂纹受接触应力和弯曲疲劳应力共同控制,转向更大角度方向扩展;最后,裂纹完全受弯曲疲劳应力控制而垂直于接触表面扩展,直至断裂失效。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
申颜团
彭金方
徐志彪
刘建华
蔡振兵
朱旻昊
关键词 弯曲微动疲劳微动损伤疲劳寿命裂纹扩展    
Abstract

A series of bending fretting fatigue tests of 18CrNiMo7-6 alloy steel were carried out, the bending fretting fatigue S-N curve was built up, and an analysis was made on the test results. The results show that, the S-N curve of 18CrNiMo7-6 alloy steel presents a shape of "ε" curve, which is different from the medium carbon steel, and also different from the plain bending fatigue. With the increase of the bending fatigue stress, the fretting regime transforms from partial slip regime to mixed regime and slip regime. The wear mechanisms of fretting damage zones mainly are delaminated, abrasive wear and oxidative wear. In the mixed regime, the cracks are easy to initiate and propagate, and the cracks all originate from the subsurface of contact zone. Due to the different influence levels of the contact stress and bending fatigue stress, the initiation and propagation of the bending fretting fatigue cracks can be divided into three stages. Firstly, the cracks initiate from subsurface under the control of contact stress; then propagate to a larger angle direction under the joint control of contact stress and bending fatigue stress; lastly the cracks propagate vertically to contact surface until fracture failure under the control of bending fatigue stress.

Key wordsbending fretting fatigue    fretting damage    fatigue life    crack propagation
收稿日期: 2015-04-23      出版日期: 2017-07-21
中图分类号:  TH117.1  
基金资助:国家杰出青年科学基金资助项目(51025519);教育部创新团队资助项目(IRT1178);国家自然科学青年基金资助项目(51305364);中央高校基本科研业务费专项资金资助项目(2682014BR031)
通讯作者: 朱旻昊     E-mail: zhuminhao@swjtu.cn
作者简介: 朱旻昊(1968-), 男, 教授, 博导, 从事专业:摩擦学、表面工程, 联系地址:四川省成都市二环路北一段111号西南交通大学(610031), E-mail:zhuminhao@swjtu.cn
引用本文:   
申颜团, 彭金方, 徐志彪, 刘建华, 蔡振兵, 朱旻昊. 18CrNiMo7-6合金钢的弯曲微动疲劳特性[J]. 材料工程, 2017, 45(7): 103-110.
Yan-tuan SHEN, Jin-fang PENG, Zhi-biao XU, Jian-hua LIU, Zhen-bing CAI, Min-hao ZHU. Bending Fretting Fatigue Characteristics of 18CrNiMo7-6 Alloy Steel. Journal of Materials Engineering, 2017, 45(7): 103-110.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000488      或      http://jme.biam.ac.cn/CN/Y2017/V45/I7/103
Material C Si Mn Cr Ni Mo P S Fe
18CrNiMo7-6 0.14-0.19 0.15-0.40 0.40-0.60 1.50-1.80 1.40-1.70 0.25-0.35 ≤0.035 ≤0.035 Bal
40CrNi2MoA 0.38-0.43 0.20-0.35 0.60-0.80 0.70-0.90 1.65-2.00 0.20-0.30 ≤0.025 ≤0.025 Bal
Table 1  实验合金钢的主要成分(质量分数/%)
Fig.1  弯曲微动疲劳试样尺寸图
Bending fatigue load/kN Maximal bending stress/MPa
8.00 895.2
8.25 923.2
8.50 951.2
8.75 979.2
9.00 1007.2
9.25 1035.1
9.50 1063.1
Table 2  弯曲疲劳载荷与最大弯曲应力
Fig.2  弯曲微动疲劳S-N曲线
Fig.3  不同弯曲疲劳应力下接触区损伤形貌
(a)F=8.00kN, σa, max=895.2MPa; (b)F=8.50kN, σa, max=951.2MPa; (c)F=9.00kN, σa, max=1007.2MPa
Fig.4  部分滑移区的微动损伤形貌(F=8.00kN, σa, max=895.2MPa, N=3×105cycles)
(a)固定端;(b)加载端
Fig.5  混合区的微动损伤形貌(F=8.50kN, σa, max=951.2MPa, N=3×105cycles)
(a)固定端;(b)图 5(a)长方形区域放大图;(c)加载端
Fig.6  滑移区的损伤形貌(F=9.00kN, σa, max=1007.2MPa, N=3×105cycles)
(a)固定端;(b)加载端
Fig.7  混合区裂纹SEM像(F=8.50kN, σa, max=951.2MPa)
Fig.8  弯曲微动疲劳裂纹剖面SEM像(F=8.50kN, σa, max=951.2MPa)
(a)N=1×105cycles; (b)N=4×105cycles; (c)图 8(b)长方形区域放大图
Fig.9  裂纹萌生和扩展路线图(F=8.50kN, σa, max=951.2MPa)
Fig.10  疲劳断口裂纹源区SEM像
(a)疲劳断口整体形貌; (b)磨屑及擦伤痕迹; (c)裂纹萌生位置; (d)二次裂纹
Fig.11  疲劳断口裂纹扩展区SEM像
(a)疲劳条纹; (b)二次裂纹及穿晶特征
1 周仲荣, 朱旻昊. 复合微动磨损[M]. 上海: 上海交通大学出版社, 2004.
2 周仲荣. 关于微动磨损与微动疲劳的研究[J]. 中国机械工程, 2000, (10): 1146- 1150.
doi: 10.3321/j.issn:1004-132X.2000.10.022
2 ZHOU Z R . On fretting wear and fretting fatigue[J]. China Mechanical Engineering, 2000, (10): 1146- 1150.
doi: 10.3321/j.issn:1004-132X.2000.10.022
3 周仲荣, 罗唯力, 刘家浚. 微动摩擦学的发展现状与趋势[J]. 摩擦学学报, 1997, 17 (3): 272- 280.
3 ZHOU Z R , LUO W L , LIU J J . Recent development in fretting research[J]. Tribology, 1997, 17 (3): 272- 280.
4 沈明学, 彭金方, 朱旻昊. 微动疲劳研究进展[J]. 材料工程, 2010, (12): 86- 91.
doi: 10.3969/j.issn.1001-4381.2010.12.019
4 SHEN M X , PENG J F , ZHU M H . Study and development of fretting fatigue[J]. Journal of Materials Engineering, 2010, (12): 86- 91.
doi: 10.3969/j.issn.1001-4381.2010.12.019
5 WINKLER J , GEORGAKIS C T , FISCHER G . Fretting fatigue behavior of high-strength steel monostrands under bending load[J]. International Journal of Fatigue, 2015, 70, 13- 23.
doi: 10.1016/j.ijfatigue.2014.08.009
6 ALFREDSSON B . Fretting fatigue of a shrink-fit pin subjected to rotating bending: experiments and simulations[J]. International Journal of Fatigue, 2009, 31 (10): 1559- 1570.
doi: 10.1016/j.ijfatigue.2009.04.019
7 JUUMA T . Torsional fretting fatigue strength of a shrink-fitted shaft with a grooved hub[J]. Tribology International, 2000, 33 (8): 537- 543.
doi: 10.1016/S0301-679X(00)00102-X
8 付昆, 张凯, 凌惠群. 18CrNMo7-6钢输出齿轮轴裂纹分析[J]. 金属热处理, 2011, 36 (增1): 331- 333.
8 FU K , ZHANG K , LING H Q . Crack analysis of output gear shaft of 18CrNiMo7-6 steel[J]. Heat Treatment of Metals, 2011, 36 (Suppl 1): 331- 333.
9 PENG J F , SONG C , ZHU M H . An experimental study on bending fretting fatigue characteristics of 316L austenitic stainless steel[J]. Tribology International, 2011, 44 (11): 1417- 1426.
doi: 10.1016/j.triboint.2010.11.013
10 PENG J F , LIU J H , ZHU M H , et al. Study on bending fretting fatigue damages of 7075 aluminum alloy[J]. Tribology International, 2013, 59, 38- 46.
doi: 10.1016/j.triboint.2012.06.016
11 PENG J F , ZHU M H , CAI Z B , et al. On the damage mechanisms of bending fretting fatigue[J]. Tribology International, 2014, 76, 133- 141.
doi: 10.1016/j.triboint.2013.12.018
12 刘大伟, 彭金方, 田来. 30CrNiMo8合金钢的弯曲微动疲劳特性[J]. 机械工程材料, 2014, (8): 48- 52.
12 LIU D W , PENG J F , TIAN L . Study on bending fretting fatigue characteristics of 30CrNiMo8 alloy steel[J]. Materials for Mechanical Engineering, 2014, (8): 48- 52.
13 田来, 陈昊, 彭金方. 40CrNi2MoA合金钢的弯曲微动疲劳特性[J]. 润滑与密封, 2014, (6): 14- 18.
13 TIAN L , CHEN H , PENG J F . Study on bending fretting fatigue characteristics of 40CrNi2MoA alloy steel[J]. Lubrication Engineering, 2014, (6): 14- 18.
14 HYUKJAE L , SHANKAR M . Investigation into effects and interaction of various fretting fatigue variables under slip-controlled mode[J]. Tribology International, 2006, 39 (10): 1213- 1219.
doi: 10.1016/j.triboint.2006.02.011
[1] 杨智勇, 臧家俊, 方丹琳, 李翔, 李志强, 李卫京. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50(7): 165-175.
[2] 王付胜, 孔繁淇, 王文平, 陈亚军. 航空铝合金原位腐蚀疲劳性能及断裂机理[J]. 材料工程, 2022, 50(6): 149-156.
[3] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[4] 许良, 黄双君, 回丽, 王磊, 周松, 赵晴. TB6钛合金疲劳小裂纹扩展行为[J]. 材料工程, 2019, 47(11): 171-177.
[5] 赵景云, BamberBLACKMAN, 颜悦, 张旋, 张晓雯. YB-DM-10航空定向有机玻璃疲劳裂纹扩展性能[J]. 材料工程, 2018, 46(8): 156-162.
[6] 回丽, 刘思奇, 周松, 王磊, 马闯, 赵强. 载荷方向和焊缝余高对氩弧焊缝疲劳性能的影响[J]. 材料工程, 2018, 46(2): 122-127.
[7] 荆洪阳, 唐梦茹, 赵雷, 徐连勇. P92钢蠕变-疲劳交互作用下的裂纹扩展行为[J]. 材料工程, 2017, 45(5): 112-117.
[8] 张玉波, 郭荣鑫, 夏海廷, 颜峰, 林志伟. WCp含量对粉末冶金Cu/WCp复合材料疲劳裂纹扩展行为的影响[J]. 材料工程, 2017, 45(1): 85-92.
[9] 冷建成, 张辉, 周国强, 吴泽民. 再制造抽油杆疲劳寿命评估的磁记忆检测实验研究[J]. 材料工程, 2016, 44(9): 103-108.
[10] 李永德, 张莉莉, 张冲, 贺莹莹. SUJ2轴承钢超长寿命疲劳行为研究[J]. 材料工程, 2016, 44(8): 85-92.
[11] 梁小林, 许希武, 林智育. 复合材料层板低速冲击后疲劳性能实验研究[J]. 材料工程, 2016, 44(12): 100-106.
[12] 左平, 魏大盛, 王延荣. FGH95粉末高温合金裂纹闭合效应及裂纹扩展特性研究[J]. 材料工程, 2015, 43(8): 56-61.
[13] 童第华, 吴学仁, 刘建中, 胡本润, 陈勃. 基于小裂纹理论的铸造钛合金ZTC4疲劳寿命预测[J]. 材料工程, 2015, 43(6): 60-65.
[14] 许天旱, 王荣, 冯耀荣, 雒设计, 王党会, 杨宝. 应力比对K55套管钻井钢疲劳裂纹扩展性能的影响[J]. 材料工程, 2015, 43(6): 79-84.
[15] 杨冬野, 曹福洋, 许文勇, 左欣, 李周, 张国庆, 孙剑飞. 喷射成形GH738合金的疲劳裂纹扩展行为[J]. 材料工程, 2014, 0(7): 55-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn