Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (5): 106-111    DOI: 10.11868/j.issn.1001-4381.2015.000508
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
CrMoWV钢的应力松弛行为及其预测
曹铁山1, 程从前1, 朱月梅2, 张弘伟2, 刘松峰2, 赵杰1
1. 大连理工大学 材料科学与工程学院, 辽宁 大连 116085;
2. 上海汽轮机有限公司, 上海 200240
Stress Relaxation Behavior and Its Prediction of CrMoWV Steel
CAO Tie-shan1, CHENG Cong-qian1, ZHU Yue-mei2, ZHANG Hong-wei2, LIU Song-feng2, ZHAO Jie1
1. School of Materials Science and Engineering, Dalian University of Technology, Dalian 116085, Liaoning, China;
2. Shanghai Turbine Co., Ltd., Shanghai 200240, China
全文: PDF(1631 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以12Cr-1Mo-1W-0.25V耐热钢550,600℃的8760h松弛实验数据作为对象,研究短时间松弛数据准确而有效预测长时间松弛应力的方法。在采用松弛模型对长时间松弛应力进行直接拟合外推时,发现模型参数与所采用拟合数据的时间长度呈规律性的变化。提出考虑模型参数规律变化的时序参数法,以高精度预测长时间松弛应力。通过对比时序参数法与直接拟合外推法的预测结果,认为时序参数法在用短时间松弛数据预测长时间松弛应力上具有明显优势,预测结果的准确性较直接外推法高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹铁山
程从前
朱月梅
张弘伟
刘松峰
赵杰
关键词 应力松弛松弛模型时序参数法预测    
Abstract:The stress relaxation data up to 8760h at 550℃ and 600℃of 12Cr-1Mo-1W-0.25V heat-resistant steel were used as the object to study the method of how to accurately and effectively predict long-term relaxation stress by using short-time relaxation data. When relaxation model is used to extrapolate the long-term relaxation stress directly, it is found that the parameters of the relaxation model depend on the length of the fitted data. The time-dependent parameter model, naming as timing parameter method, is proposed to predict the long-term relaxation stress with high accuracy. By comparison of the results of timing parameter method and direct extrapolation method, timing parameter method has obvious advantages in predicting long time relaxation stress with short time relaxation data, as the timing parameter method has a more accurate prediction than that of direct extrapolation method.
Key wordsstress relaxation    relaxation model    timing parameter method    prediction
收稿日期: 2015-04-27      出版日期: 2017-05-17
中图分类号:  TG132.33  
通讯作者: 赵杰(1964-),男,教授,博士,研究方向为失效分析,联系地址:辽宁省大连市大连理工大学材料馆326(116085),E-mail:jiezhao@dlut.edu.cn     E-mail: jiezhao@dlut.edu.cn
引用本文:   
曹铁山, 程从前, 朱月梅, 张弘伟, 刘松峰, 赵杰. CrMoWV钢的应力松弛行为及其预测[J]. 材料工程, 2017, 45(5): 106-111.
CAO Tie-shan, CHENG Cong-qian, ZHU Yue-mei, ZHANG Hong-wei, LIU Song-feng, ZHAO Jie. Stress Relaxation Behavior and Its Prediction of CrMoWV Steel. Journal of Materials Engineering, 2017, 45(5): 106-111.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000508      或      http://jme.biam.ac.cn/CN/Y2017/V45/I5/106
[1] GUPTA I, LI J C M. Stress relaxation, internal stress, and work hardening in some bcc metals and alloys[J]. Metall Trans, 1970,1(8):2223-2230.
[2] 平修二. 金属材料的高温强度理论·设计[M].郭迁玮,李安定,徐介平,译.北京:科学出版社,1983.154. TAIRA S. High Temperature Strength of Metallic Materials Theory and Design[M]. GUO Q W, LI A D, XU J P, translate. Beijing: Science Press,1983.154.
[3] 刘勇,尹钟大,朱景川,等. 工艺因素对TC4合金应力松弛行为的影响[J]. 材料工程,2005,(4):38-41. LIU Y, YIN Z D, ZHU J C, et al. Influence of processing factors on stress relaxation behavior of TC4 alloy[J]. J Mater Eng, 2005,(4):38-41.
[4] 郭进全, 轩福贞, 何磊. 螺栓材料1Cr10NiMoW2VNbN的应力松弛行为及预测模型[J].核动力工程,2008,29(6):119-124. GUO J Q, XUAN F Z, HE L. Stress relaxation performance and prediction models for bolt material of 1Cr10NiMoW2VNbN[J]. Nucl Power Eng,2008,29(6):119-124.
[5] EK C G, HAGSTRÖM B, KUBÁT J, et al. Prediction of the creep behaviour of polyethylene and molybdenum from stress relaxation experiments[J]. Rheologica Acta,1986,25(5):534-541.
[6] ALTENBACH H, NAUMENKO K,GORASH Y. Creep analysis for a wide stress range based on stress relaxation experiments[J]. Int J Mod Phys B,2008,22(31-32):5413-5418.
[7] 曹铁山,方旭东,程从前,等. 应力松弛方法研究2种HR3C耐热钢的高温蠕变行为[J]. 金属学报,2014,50(11):1343-1349. CAO T S, FANG X D, CHENG C Q,et al. Creep behavior of two kinds of HR3C heat resistant steels based on stress relaxation tests[J].Acta Metall Sin,2014,50(11):1343-1349.
[8] WOODFORD D A. Advances in the use of stress relaxation data for design and life assessment in combustion turbines[J].JSME Int J A-Solid M,2002,45(1):98-103.
[9] BEDDOES J. Prediction of creep properties for two nickel-base superalloys from stress relaxation testing[J].J Strain Anal Eng, 2011,46(6):416-427.
[10] 湛利华, 王萌, 黄明辉. 基于蠕变公式的时效应力松弛行为预测模型[J]. 机械工程学报,2013,49(10):70-76. ZHAN L H, WANG M, HUANG M H. Prediction model for aging stress-relaxation behavior based on creep equations[J]. J Mech Eng,2013,49(10):70-76.
[11] DOTSENKO V I. Stress relaxation in crystals[J]. Phys Stat Sol B,1979,93(1):11-43.
[12] DAVIS F M, DE VITA R. A three-dimensional constitutive model for the stress relaxation of articular ligaments[J]. Biomech Model Mechan,2014,13(3):653-663.
[13] GRANEK R, CATES M E. Stress-relaxation in living polymers-results from a poisson renewal model[J]. J Cheml Phys,1992,96(6):4758-4767.
[14] 董瑾. 汽轮机螺栓应力松弛行为预测的研究[J]. 华北电力大学学报,2013,40(1):84-87. DONG J. Study on stress relaxation performance prediction for steam turbine bolts[J]. J N China Elec Power Univ,2013,40(1):84-87.
[15] OHBA T,KANEMARU O,YAGI K, et al. Long-term stress relaxation properties of NCF 800H alloy[J]. Soc Mat Sci,1997,46(1):19-24.
[1] 曲丽丹, 韩斌慧, 吕云卓, 白钰枝. 激光3D打印非晶合金晶化体积分数的理论预测[J]. 材料工程, 2020, 48(7): 133-138.
[2] 赵慧生, 陈国清, 盖鹏涛, 李志强, 周文龙, 付雪松. 拉-拉疲劳载荷下钛合金湿喷丸的残余应力松弛及再次喷丸工艺[J]. 材料工程, 2020, 48(5): 136-143.
[3] 戚云超, 方国东, 梁军, 谢军波. 三维针刺C/C-SiC复合材料预制体工艺参数优化[J]. 材料工程, 2020, 48(1): 27-33.
[4] 张菁丽, 吴金平, 罗媛媛, 赵彬, 郭荻子, 赵圣泽, 杨帆. 基于Normalized Cockcroft&Latham韧性损伤准则Ti600合金临界损伤值的测定[J]. 材料工程, 2019, 47(7): 121-125.
[5] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[6] 李会芳, 赵杰, 程从前, 闵小华, 曹铁山, 许军. 基于Zc参数的HP耐热合金高温蠕变及持久寿命的预测方法[J]. 材料工程, 2018, 46(3): 112-116.
[7] 陈亚军, 刘辰辰, 褚玉龙, 宋肖肖. 7075-T651铝合金薄壁管件多轴低周疲劳行为及寿命预测[J]. 材料工程, 2018, 46(10): 60-69.
[8] 许军, 李会芳, 程从前, 曹铁山, 赵杰. 基于应力松弛实验对服役25Cr35Ni型耐热钢的高温性能评估[J]. 材料工程, 2017, 45(8): 96-101.
[9] 王波, 吴亚波, 郭洪宝, 贾普荣, 李俊. 2D-C/SiC复合材料偏轴拉伸力学行为研究[J]. 材料工程, 2017, 45(7): 91-96.
[10] 王彬, 杨勇新, 岳清瑞, 曾滨. CFRP筋拉伸强度预测模型评价及应用[J]. 材料工程, 2017, 45(10): 117-123.
[11] 任魏巍, 邹林池, 张兴峰, 符殿宝, 陈俊锋. 7050铝合金时效成形中应力松弛行为与回弹方程[J]. 材料工程, 2016, 44(9): 89-95.
[12] 左平, 魏大盛, 王延荣. FGH95粉末高温合金裂纹闭合效应及裂纹扩展特性研究[J]. 材料工程, 2015, 43(8): 56-61.
[13] 江冯, 李萍, 程从前, 刘春慧, 赵杰. θ投影法和复合模型在预测耐热钢蠕变行为的比较分析[J]. 材料工程, 2015, 43(7): 87-92.
[14] 倪楠楠, 温月芳, 贺德龙, 益小苏, 郭妙才, 许亚洪. 结构-阻尼复合材料研究进展[J]. 材料工程, 2015, 43(6): 90-101.
[15] 童第华, 吴学仁, 刘建中, 胡本润, 陈勃. 基于小裂纹理论的铸造钛合金ZTC4疲劳寿命预测[J]. 材料工程, 2015, 43(6): 60-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn