Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (10): 65-70    DOI: 10.11868/j.issn.1001-4381.2015.000521
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Al-TiO2-C晶粒细化剂对工业纯铝细化效果的影响
韩小伟, 张瑞英, 王鹏
内蒙古工业大学 材料科学与工程学院, 呼和浩特 010051
Effect of Al-TiO2-C Grain Refiners on Refinement of Industrial Pure Aluminum
HAN Xiao-wei, ZHANG Rui-ying, WANG Peng
School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
全文: PDF(25848 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以TiO2粉、C粉、Al粉为原料,利用放热弥散法制备Al-TiO2-C晶粒细化剂,采用XRD,SEM,EDS等研究不同C与TiO2比例的细化剂的显微组织,并对工业纯铝进行细化实验。结果表明:Al-TiO2-C晶粒细化剂析出相为Al3Ti,TiC和Al2O3。当C与TiO2摩尔比为1∶25~1∶20时,Al-TiO2-C细化剂组织中Al2O3颗粒数量适中且分布相对弥散。当C与TiO2摩尔比为1∶20,该细化剂添加量为0.2%(质量分数)时,可将工业纯铝细化到约142μm,且保温1h未出现细化衰退。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩小伟
张瑞英
王鹏
关键词 放热弥散法Al-TiO2-C细化剂晶粒细化    
Abstract:The Al-TiO2-C grain refiners were synthesized by the in-situ exothermic dispersion method by using TiO2,C and Al powders as raw materials. The microstructure of Al-TiO2-C refiners with different C/TiO2 was investigated by SEM, XRD and EDS. Grain refining test was carried out on industrial pure aluminum. The results show that Al-TiO2-C refiners are composed of Al3Ti,TiC and Al2O3. When the mole ratio of C to TiO2 is between 1:25 and 1:20, the amount of Al2O3 is moderate and its distribution is relatively dispersive. An excellent grain refining performance is obtained when adding 0.2% (mass fraction) Al-TiO2-C refiner with C/TiO2 is 1:20, the average grain size is about 142μm and there is no refining recession when holding 1h.
Key wordsexothermic dispersion method    Al-TiO2-C refiner    grain refinement
收稿日期: 2015-04-29      出版日期: 2017-10-18
中图分类号:  TB331  
通讯作者: 张瑞英(1972-),女,副教授,研究方向:铝合金及金属基复合材料,联系地址:内蒙古自治区呼和浩特市爱民街49号内蒙古工业大学材料学院(010051),E-mail:zhang_ruiying@126.com     E-mail: zhang_ruiying@126.com
引用本文:   
韩小伟, 张瑞英, 王鹏. Al-TiO2-C晶粒细化剂对工业纯铝细化效果的影响[J]. 材料工程, 2017, 45(10): 65-70.
HAN Xiao-wei, ZHANG Rui-ying, WANG Peng. Effect of Al-TiO2-C Grain Refiners on Refinement of Industrial Pure Aluminum. Journal of Materials Engineering, 2017, 45(10): 65-70.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000521      或      http://jme.biam.ac.cn/CN/Y2017/V45/I10/65
[1] DIRK R, CHRISTOPH K,SVEN E, et al. Grain refinement by electromagnetic stirring and the impact on the mechanical properties of AlSi-alloys[J]. Journal of Iron and Steel Research, International, 2012,19(Suppl 1):341-344.
[2] 周蕾,史庆南,王军丽. 异步累积叠轧制备超细晶纯铜微观组织演化规律及细化机制[J].航空材料学报,2014,34(5):49-54. ZHOU L, SHI Q N, WANG J L. Microstructure evolution and refinement mechanism of ultra-fine copper prepared by asymmetrical accumulative roll bonding[J].Journal of Aeronautical Materials, 2014,34(5):49-54.
[3] MALLIKARJUNA C, SHASHIDHARA S M, MALLIK U S, et al. Grain refinement and wear properties evaluation of aluminum alloy 2014 matrix-TiB2 in-situ composites[J]. Materials & Design,2011,32(6):3554-3559.
[4] ZHAO H L, SONG Y, LI M,et al. Grain refining efficiency and microstructure of Al-Ti-C-RE master alloy[J]. Journal of Alloys and Compounds,2010,508(1):206-211.
[5] 王正军.Al-Ti-C细化剂组织及细化效果[J].有色金属,2011,63(2):10-13. WANG Z J. Microstructure and refining effect of Al-Ti-C refiner[J]. Nonferrous Metals,2011,63(2):10-13.
[6] QIU D, TAVLOR J A, ZHANG M X. Understanding the co-poisoning effect of Zr and Ti on the grain refinement of casting aluminum alloys[J]. Metallurgical and Materials Transactions A,2010,41(13):3412-3421.
[7] 丁万武,夏天东,赵文军. TiAl3对TiC粒子在铝熔体中沉淀特性的影响机理[J].材料工程,2013(3):10-15. DING W W, XIA T D, ZHAO W J. Effect mechanism of TiAl3 on the precipitation of TiC particles in aluminum melt[J]. Journal of Materials Engineering, 2013(3):10-15.
[8] WANG E Z, GAO T, NIE J F, et al. Grain refinement limit and mechanical properties of 6063 alloy inoculated by Al-Ti-C-B master alloys[J]. Journal of Alloys and Compounds,2014,594:7-11.
[9] GEZER B T, TOPTAN F, DAGLILAR S, et al. Production of Al-Ti-C grain refiners with the addition of elemental carbon[J]. Materials & Design,2010, 31(Suppl 1):30-35.
[10] BIROL Y. The performance of Al-Ti-C grain refiners in twin-roll casting of aluminum foil stock[J]. Journal of Alloys and Compounds,2007,430(1/2):179-187.
[11] LEE J H, KO S K, WON C W. Sintering behavior of Al2O3-TiC composite powder prepared by SHS process[J]. Materials Research Bulletin, 2001,36(5/6):989-996.
[12] 陈素娟,张瑞英,史志铭,等.La对原位合成TiC-Al2O3/Al复合材料组织与耐蚀性的影响[J].材料热处理学报,2014,35(11):6-10. CHEN S J, ZHANG R Y, SHI Z M, et al. Effect of La on microstructure and corrosion resistance of in-situ synthesized TiC-Al2O3/Al composites[J]. Transactions of Materials and Heat Treatment,2014,35(11):6-10.
[13] ZHU H G, JIANG Y L, YAO Y Q, et al. Reaction pathways, activation energies and mechanical properties of hybrid composites synthesized in-situ from Al-TiO2-C powder mixtures[J]. Materials Chemistry and Physics, 2012,137(2):532-542.
[14] 白朴存,代雄杰,赵春旺,等. Al2O3/Al复合材料的界面结构特征[J].复合材料学报,2008,25(1):88-93. BAI P C, DAI X J, ZHAO C W, et al. Structural features of the interfaces within Al2O3/Al composite[J]. Acta Materiae Compositae Sinica,2008,25(1):88-93.
[15] WANG Y, LI H T, FAN Z Y. Oxidation of aluminum alloy melts and inoculation by oxide particles[J]. Transactions of the Indian Institute of Metals, 2012,65(6):653-661.
[16] 张瑞英,陈素娟,史志铭,等.Mg对原位合成TiC-Al2O3/Al复合材料组织与耐磨性的影响[J].材料工程,2014(10):65-70. ZHANG R Y, CHEN S J, SHI Z M, et al. Effect of Mg on microstructures and abrasive resistance of in-situ synthesis TiC-Al2O3/Al composites[J]. Journal of Materials Engineering, 2014(10):65-70.
[17] 陈优,王正军,王一贺.新型AlTiC中间合金对工业纯铝的细化研究[J].稀有金属与硬质合金,2010,38(2):18-21. CHEN Y, WANG Z J, WANG Y H. Study of refining of commercial pure aluminum by a new AlTiC master alloy[J]. Rare Metals and Cemented Carbides, 2010,38(2):18-21.
[18] FAN Z, WANG Y, ZHANG Y, et al. Grain refining mechanism in the Al/Al-Ti-B system[J]. Acta Materialia,2015,84:292-304.
[1] 刘欢, 张瑞英, 李金轩, 杨森, 闫晗. TiO2粒径对Al-TiO2-C细化剂组织及细化效果的影响[J]. 材料工程, 2020, 48(8): 126-133.
[2] 袁继慧, 陈辉明, 谢伟滨, 魏海根, 汪航, 杨斌. Cu-Cr-Ti-Si合金加工软化的机理[J]. 材料工程, 2020, 48(11): 140-146.
[3] 叶凌英, 孙泉, 李红萍, 刘胜胆, 张新明. 预变形对2050铝锂合金晶粒细化及超塑性的影响[J]. 材料工程, 2019, 47(12): 92-97.
[4] 王鹏, 张瑞英, 韩小伟, 刘天丽, 杨森. 不同压制压力制备的Al-TiO2-C细化剂对ZL101合金细化效果的影响[J]. 材料工程, 2018, 46(8): 84-90.
[5] 张国君, 武玉英, 杨化冰, 刘桂亮, 孙谦谦, 刘相法. 抗Zr“中毒”Al-Ti-B-C中间合金对7050铝合金力学性能的影响[J]. 材料工程, 2017, 45(4): 1-8.
[6] 李贺, 柴丽华, 马腾飞, 陈子勇. 高温熔体反应法制备Al-5Ti-1B细化剂[J]. 材料工程, 2017, 45(2): 39-45.
[7] 万响亮, 李光强, 周博文, 马江华. 奥氏体不锈钢晶粒细化对形变机制和力学性能的影响[J]. 材料工程, 2016, 44(8): 29-33.
[8] 王明华, 杜军. 微量Fe对Mg-3%Al合金碳质孕育衰退的影响[J]. 材料工程, 2016, 44(5): 54-58.
[9] 江海涛, 段晓鸽, 蔡正旭, 王丹. 异步轧制AZ31镁合金板材的超塑性工艺及变形机制[J]. 材料工程, 2015, 43(8): 7-12.
[10] 唐群华, 廖晓舟, 戴品强. Al0.3CoCrFeNi高熵合金高压扭转过程中的组织结构演变[J]. 材料工程, 2015, 43(12): 45-51.
[11] 黄元春, 杜志勇, 肖政兵, 颜徐宇. Al-Ti-C和Al-Ti-B对7050铝合金微观组织与力学性能的影响[J]. 材料工程, 2015, 43(12): 75-80.
[12] 李晓闲, 孙新军, 杨庚蔚, 李昭东, 虞澜, 雍岐龙. 低碳钒微合金钢的淬透性研究[J]. 材料工程, 2014, 0(4): 58-62.
[13] 葛茂忠, 项建云, 张永康. 激光冲击处理对AZ31B镁合金力学性能的影响[J]. 材料工程, 2013, 0(9): 54-59.
[14] 胡耀波, 赵冲, 吴福洲, 李亚妮. Mg-Zn-xCu-Ce镁合金铸态组织与力学性能[J]. 材料工程, 2012, 0(5): 1-5.
[15] 韩栋, 杜军, 李文芳. 碳和碱土元素复合细化对Mg-3Al合金抗拉强度的影响[J]. 材料工程, 2011, 0(5): 21-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn