Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (10): 65-70    DOI: 10.11868/j.issn.1001-4381.2015.000521
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Al-TiO2-C晶粒细化剂对工业纯铝细化效果的影响
韩小伟, 张瑞英(), 王鹏
内蒙古工业大学 材料科学与工程学院, 呼和浩特 010051
Effect of Al-TiO2-C Grain Refiners on Refinement of Industrial Pure Aluminum
Xiao-wei HAN, Rui-ying ZHANG(), Peng WANG
School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
全文: PDF(25848 KB)   HTML ( 20 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以TiO2粉、C粉、Al粉为原料,利用放热弥散法制备Al-TiO2-C晶粒细化剂,采用XRD,SEM,EDS等研究不同C与TiO2比例的细化剂的显微组织,并对工业纯铝进行细化实验。结果表明:Al-TiO2-C晶粒细化剂析出相为Al3Ti,TiC和Al2O3。当C与TiO2摩尔比为1:25~1:20时,Al-TiO2-C细化剂组织中Al2O3颗粒数量适中且分布相对弥散。当C与TiO2摩尔比为1:20,该细化剂添加量为0.2%(质量分数)时,可将工业纯铝细化到约142μm,且保温1h未出现细化衰退。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩小伟
张瑞英
王鹏
关键词 放热弥散法Al-TiO2-C细化剂晶粒细化    
Abstract

The Al-TiO2-C grain refiners were synthesized by the in-situ exothermic dispersion method by using TiO2, C and Al powders as raw materials. The microstructure of Al-TiO2-C refiners with different C/TiO2 was investigated by SEM, XRD and EDS. Grain refining test was carried out on industrial pure aluminum. The results show that Al-TiO2-C refiners are composed of Al3Ti, TiC and Al2O3. When the mole ratio of C to TiO2 is between 1:25 and 1:20, the amount of Al2O3 is moderate and its distribution is relatively dispersive. An excellent grain refining performance is obtained when adding 0.2% (mass fraction) Al-TiO2-C refiner with C/TiO2 is 1:20, the average grain size is about 142μm and there is no refining recession when holding 1h.

Key wordsexothermic dispersion method    Al-TiO2-C refiner    grain refinement
收稿日期: 2015-04-29      出版日期: 2017-10-18
中图分类号:  TB331  
基金资助:内蒙古自治区自然科学基金项目(2017MS(LH)0509);内蒙古自治区高等学校科学研究基金项目(NJZZ14056)
通讯作者: 张瑞英     E-mail: zhang_ruiying@126.com
作者简介: 张瑞英(1972-), 女, 副教授, 研究方向:铝合金及金属基复合材料, 联系地址:内蒙古自治区呼和浩特市爱民街49号内蒙古工业大学材料学院(010051), E-mail:zhang_ruiying@126.com
引用本文:   
韩小伟, 张瑞英, 王鹏. Al-TiO2-C晶粒细化剂对工业纯铝细化效果的影响[J]. 材料工程, 2017, 45(10): 65-70.
Xiao-wei HAN, Rui-ying ZHANG, Peng WANG. Effect of Al-TiO2-C Grain Refiners on Refinement of Industrial Pure Aluminum. Journal of Materials Engineering, 2017, 45(10): 65-70.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000521      或      http://jme.biam.ac.cn/CN/Y2017/V45/I10/65
Fig.1  不同C与TiO2摩尔比细化剂微观组织
(a)0;(b)1:30;(c)1:25;(d)1:20;(e)1:15;(f)1:10
Fig.2  圆块状颗粒相能谱分析
Fig.3  不同C与TiO2摩尔比细化剂的XRD图谱
(a)0;(b)1:30;(c)1:25;(d)1:20;(e)1:15;(f)1:10
Fig.4  不同C与TiO2摩尔比细化剂的细化效果图
(a)未添加细化剂; (b)0;(c)1:30;(d)1:25;(e)1:20;(f)1:15;(g)1:10
Fig.5  平均晶粒尺寸随C与TiO2比例分布图
Fig.6  不同保温时间下细化剂的细化效果图
a)Al-TiO2-C; (b)Al-5Ti-B; (1)5min; (2)10min; (3)30min; (4)1h
1 DIRK R , CHRISTOPH K , SVEN E , et al. Grain refinement by electromagnetic stirring and the impact on the mechanical properties of AlSi-alloys[J]. Journal of Iron and Steel Research, International, 2012, 19 (Suppl 1): 341- 344.
2 周蕾, 史庆南, 王军丽. 异步累积叠轧制备超细晶纯铜微观组织演化规律及细化机制[J]. 航空材料学报, 2014, 34 (5): 49- 54.
doi: 10.11868/j.issn.1005-5053.2014.5.008
2 ZHOU L , SHI Q N , WANG J L . Microstructure evolution and refinement mechanism of ultra-fine copper prepared by asymmetrical accumulative roll bonding[J]. Journal of Aeronautical Materials, 2014, 34 (5): 49- 54.
doi: 10.11868/j.issn.1005-5053.2014.5.008
3 MALLIKARJUNA C , SHASHIDHARA S M , MALLIK U S , et al. Grain refinement and wear properties evaluation of aluminum alloy 2014 matrix-TiB2 in-situ composites[J]. Materials & Design, 2011, 32 (6): 3554- 3559.
4 ZHAO H L , SONG Y , LI M , et al. Grain refining efficiency and microstructure of Al-Ti-C-RE master alloy[J]. Journal of Alloys and Compounds, 2010, 508 (1): 206- 211.
doi: 10.1016/j.jallcom.2010.08.047
5 王正军. Al-Ti-C细化剂组织及细化效果[J]. 有色金属, 2011, 63 (2): 10- 13.
5 WANG Z J . Microstructure and refining effect of Al-Ti-C refiner[J]. Nonferrous Metals, 2011, 63 (2): 10- 13.
6 QIU D , TAVLOR J A , ZHANG M X . Understanding the co-poisoning effect of Zr and Ti on the grain refinement of casting aluminum alloys[J]. Metallurgical and Materials Transactions A, 2010, 41 (13): 3412- 3421.
doi: 10.1007/s11661-010-0404-2
7 丁万武, 夏天东, 赵文军. TiAl3对TiC粒子在铝熔体中沉淀特性的影响机理[J]. 材料工程, 2013, (3): 10- 15.
7 DING W W , XIA T D , ZHAO W J . Effect mechanism of TiAl3 on the precipitation of TiC particles in aluminum melt[J]. Journal of Materials Engineering, 2013, (3): 10- 15.
8 WANG E Z , GAO T , NIE J F , et al. Grain refinement limit and mechanical properties of 6063 alloy inoculated by Al-Ti-C-B master alloys[J]. Journal of Alloys and Compounds, 2014, 594, 7- 11.
doi: 10.1016/j.jallcom.2014.01.145
9 GEZER B T , TOPTAN F , DAGLILAR S , et al. Production of Al-Ti-C grain refiners with the addition of elemental carbon[J]. Materials & Design, 2010, 31 (Suppl 1): 30- 35.
10 BIROL Y . The performance of Al-Ti-C grain refiners in twin-roll casting of aluminum foil stock[J]. Journal of Alloys and Compounds, 2007, 430 (1/2): 179- 187.
11 LEE J H , KO S K , WON C W . Sintering behavior of Al2O3-TiC composite powder prepared by SHS process[J]. Materials Research Bulletin, 2001, 36 (5/6): 989- 996.
12 陈素娟, 张瑞英, 史志铭, 等. La对原位合成TiC-Al2O3/Al复合材料组织与耐蚀性的影响[J]. 材料热处理学报, 2014, 35 (11): 6- 10.
12 CHEN S J , ZHANG R Y , SHI Z M , et al. Effect of La on microstructure and corrosion resistance of in-situ synthesized TiC-Al2O3/Al composites[J]. Transactions of Materials and Heat Treatment, 2014, 35 (11): 6- 10.
13 ZHU H G , JIANG Y L , YAO Y Q , et al. Reaction pathways, activation energies and mechanical properties of hybrid composites synthesized in-situ from Al-TiO2-C powder mixtures[J]. Materials Chemistry and Physics, 2012, 137 (2): 532- 542.
doi: 10.1016/j.matchemphys.2012.09.052
14 白朴存, 代雄杰, 赵春旺, 等. Al2O3/Al复合材料的界面结构特征[J]. 复合材料学报, 2008, 25 (1): 88- 93.
14 BAI P C , DAI X J , ZHAO C W , et al. Structural features of the interfaces within Al2O3/Al composite[J]. Acta Materiae Compositae Sinica, 2008, 25 (1): 88- 93.
15 WANG Y , LI H T , FAN Z Y . Oxidation of aluminum alloy melts and inoculation by oxide particles[J]. Transactions of the Indian Institute of Metals, 2012, 65 (6): 653- 661.
doi: 10.1007/s12666-012-0194-x
16 张瑞英, 陈素娟, 史志铭, 等. Mg对原位合成TiC-Al2O3/Al复合材料组织与耐磨性的影响[J]. 材料工程, 2014, (10): 65- 70.
doi: 10.11868/j.issn.1001-4381.2014.10.012
16 ZHANG R Y , CHEN S J , SHI Z M , et al. Effect of Mg on microstructures and abrasive resistance of in-situ synthesis TiC-Al2O3/Al composites[J]. Journal of Materials Engineering, 2014, (10): 65- 70.
doi: 10.11868/j.issn.1001-4381.2014.10.012
17 陈优, 王正军, 王一贺. 新型AlTiC中间合金对工业纯铝的细化研究[J]. 稀有金属与硬质合金, 2010, 38 (2): 18- 21.
17 CHEN Y , WANG Z J , WANG Y H . Study of refining of commercial pure aluminum by a new AlTiC master alloy[J]. Rare Metals and Cemented Carbides, 2010, 38 (2): 18- 21.
18 FAN Z , WANG Y , ZHANG Y , et al. Grain refining mechanism in the Al/Al-Ti-B system[J]. Acta Materialia, 2015, 84, 292- 304.
doi: 10.1016/j.actamat.2014.10.055
[1] 刘小辉, 刘允中. 激光选区熔化成形高强铝合金晶粒细化抑制裂纹研究现状[J]. 材料工程, 2022, 50(8): 1-16.
[2] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[3] 刘欢, 张瑞英, 李金轩, 杨森, 闫晗. TiO2粒径对Al-TiO2-C细化剂组织及细化效果的影响[J]. 材料工程, 2020, 48(8): 126-133.
[4] 袁继慧, 陈辉明, 谢伟滨, 魏海根, 汪航, 杨斌. Cu-Cr-Ti-Si合金加工软化的机理[J]. 材料工程, 2020, 48(11): 140-146.
[5] 叶凌英, 孙泉, 李红萍, 刘胜胆, 张新明. 预变形对2050铝锂合金晶粒细化及超塑性的影响[J]. 材料工程, 2019, 47(12): 92-97.
[6] 王鹏, 张瑞英, 韩小伟, 刘天丽, 杨森. 不同压制压力制备的Al-TiO2-C细化剂对ZL101合金细化效果的影响[J]. 材料工程, 2018, 46(8): 84-90.
[7] 张国君, 武玉英, 杨化冰, 刘桂亮, 孙谦谦, 刘相法. 抗Zr“中毒”Al-Ti-B-C中间合金对7050铝合金力学性能的影响[J]. 材料工程, 2017, 45(4): 1-8.
[8] 李贺, 柴丽华, 马腾飞, 陈子勇. 高温熔体反应法制备Al-5Ti-1B细化剂[J]. 材料工程, 2017, 45(2): 39-45.
[9] 万响亮, 李光强, 周博文, 马江华. 奥氏体不锈钢晶粒细化对形变机制和力学性能的影响[J]. 材料工程, 2016, 44(8): 29-33.
[10] 王明华, 杜军. 微量Fe对Mg-3%Al合金碳质孕育衰退的影响[J]. 材料工程, 2016, 44(5): 54-58.
[11] 江海涛, 段晓鸽, 蔡正旭, 王丹. 异步轧制AZ31镁合金板材的超塑性工艺及变形机制[J]. 材料工程, 2015, 43(8): 7-12.
[12] 唐群华, 廖晓舟, 戴品强. Al0.3CoCrFeNi高熵合金高压扭转过程中的组织结构演变[J]. 材料工程, 2015, 43(12): 45-51.
[13] 黄元春, 杜志勇, 肖政兵, 颜徐宇. Al-Ti-C和Al-Ti-B对7050铝合金微观组织与力学性能的影响[J]. 材料工程, 2015, 43(12): 75-80.
[14] 李晓闲, 孙新军, 杨庚蔚, 李昭东, 虞澜, 雍岐龙. 低碳钒微合金钢的淬透性研究[J]. 材料工程, 2014, 0(4): 58-62.
[15] 葛茂忠, 项建云, 张永康. 激光冲击处理对AZ31B镁合金力学性能的影响[J]. 材料工程, 2013, 0(9): 54-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn