Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (2): 54-59    DOI: 10.11868/j.issn.1001-4381.2015.000527
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
烧蚀角度对C/C复合材料烧蚀行为的影响
查柏林(), 高双林, 林浩, 罗雷, 张博文, 朱杰堂, 孙振生
火箭军工程大学, 西安 710025
Effects of Ablation Angle on the Ablation Behavior of C/C Composites
Bai-lin ZHA(), Shuang-lin GAO, Hao LIN, Lei LUO, Bo-wen ZHANG, Jie-tang ZHU, Zhen-sheng SUN
Rocket Force University of Engineering, Xi'an 710025, China
全文: PDF(6489 KB)   HTML ( 8 )  
输出: BibTeX | EndNote (RIS)      
摘要 

烧蚀角度对C/C复合材料的耐烧蚀性能有显著的影响,采用自主研发的氧-煤油烧蚀实验系统对轴棒法编织的三维四向C/C复合材料进行烧蚀/侵蚀实验,实验的典型角度分别为90°,60°,45°,侵蚀时的粒子浓度为1.37%。测算试样的宏观烧蚀率,并采用扫描电镜(SEM)观察了试样烧蚀后的微观形貌。分析了角度对C/C复合材料烧蚀行为的影响规律,并探讨其烧蚀机理。结果表明:不加粒子进行烧蚀实验时,烧蚀角度90°,60°,45°对应的试样质量烧蚀率分别为0.146,0.123,0.100g/s,随烧蚀角度的减小,质量烧蚀率加速降低;加粒子进行侵蚀实验时,烧蚀角度90°,60°,45°对应的试样质量烧蚀率分别为0.452,0.455,0.432g/s,线烧蚀率分别为1.863,1.323,0.843mm/s,随烧蚀角度的减小,质量烧蚀率基本不变,线烧蚀率逐渐降低。烧蚀角度越小,射流的冲刷作用越强,伴随热化学烧蚀的作用,导致烧蚀/侵蚀实验条件下,径向纤维的烧蚀梯度均增加;烧蚀实验条件下,轴向纤维束外沿的受冲刷区域变大。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
查柏林
高双林
林浩
罗雷
张博文
朱杰堂
孙振生
关键词 烧蚀角度C/C复合材料质量烧蚀率线烧蚀率烧蚀性能    
Abstract

There is a significant impact of ablation angle on the anti-ablation performance of C/C composites. A self-designed oxygen-kerosene ablation system was employed to study the ablation behavior and mechanism of C/C composites. Typical ablation angle of the experiment was 90°, 60°, 45° respectively, and particle concentration of the gas-solid two-phase ablation flow was 1.37%. The microstructure of post-test samples was observed with the scanning electron microscope(SEM), and the ablation rate of samples was also calculated. The result shows that when the ablation angle is 90°, 60°, 45°,the corresponding mass ablation rate for ablation experiment is 0.146,0.123,0.100g/s respectively. With the decrease of ablation angle, the mass ablation rate of samples is decreased gradually; while for the samples affected by particle erosion, the corresponding mass ablation rate is 0.452,0.455,0.432g/s and the line ablation rate is 1.863,1.323,0.843mm/s. The mass ablation rate is approximately unchanged and the line ablation rate is decreased. The smaller the ablation angle is, the more serious the thermalchemical ablation of gas, and thus increase the erosion area of axial fiber bundle under ablation condition and ablation gradient of radial fiber under ablation/erosion condition.

Key wordsablation angle    C/C composite    mass ablation rate    line ablation rate    ablation performance
收稿日期: 2015-04-28      出版日期: 2017-02-23
中图分类号:  V258  
通讯作者: 查柏林     E-mail: zhabailin@163.com
作者简介: 査柏林(1974-),男,教授,博士,主要研究火箭发动机,联系地址:陕西西安灞桥区洪庆镇同心路2号(710025),zhabailin@163.com
引用本文:   
查柏林, 高双林, 林浩, 罗雷, 张博文, 朱杰堂, 孙振生. 烧蚀角度对C/C复合材料烧蚀行为的影响[J]. 材料工程, 2017, 45(2): 54-59.
Bai-lin ZHA, Shuang-lin GAO, Hao LIN, Lei LUO, Bo-wen ZHANG, Jie-tang ZHU, Zhen-sheng SUN. Effects of Ablation Angle on the Ablation Behavior of C/C Composites. Journal of Materials Engineering, 2017, 45(2): 54-59.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000527      或      http://jme.biam.ac.cn/CN/Y2017/V45/I2/54
Fig.1  实验系统原理图
ItemParameter
Oxygen flux /(L·min-1)508
Nitrogen flux/(L·min-1)20
Kerosene flux/(kg·min-1)0.220
Ablation distance/mm50
Table 1  实验系统工作参数
NoAblation angle/(°)Particle concentration/%Test time/s
190020
260020
345020
4901.373
5601.373
6451.373
Table 2  烧蚀实验方案
NoMass ablation rate/(g·s-1)Line ablation rate/(mm·s-1)
10.146
20.123
30.100
40.4521.863
50.4551.323
60.4320.843
Table 3  实验结果
Fig.2  不同烧蚀角度时射流作用简化分解示意图[12] (a)90°;(b)60°;(c)45°
Fig.3  实验后典型形貌 (a)试样1;(b)试样6
Fig.4  实验后基体的典型SEM图 (a)平行层面基体;(b)垂直层面基体
Fig.5  烧蚀条件下轴向纤维束SEM图 (a)90°;(b)60°;(c)45°
Fig.6  侵蚀条件下轴向纤维束SEM图 (a)90°;(b)60°;(c)45°
Fig.7  烧蚀条件下径向纤维SEM图 (a)90°;(b)60°;(c)45°
Fig.8  侵蚀条件下径向纤维SEM图 (a)90°;(b)60°;(c)45°
1 王峥, 胡永强. 固体火箭发动机[M]. 北京: 中国宇航出版社, 2009.
1 WANG Z , HU Y Q . Solid Rocket Motor[M]. Beijing: China Astronautic Publishing House, 2009.
2 张慧茹. 碳/碳复合材料概述[J]. 合成纤维, 2011, 40 (1): 1- 7.
2 ZHANG H R . Carbon-carbon composites-an overview[J]. Synthetic Fiber, 2011, 40 (1): 1- 7.
3 刘洋, 陈茂林, 杨涓. 固体火箭发动机复合材料基础及其设计方法[M]. 西安: 西北工业大学出版社, 2012.
3 LIU Y , CHEN M L , YANG J . Composite Material Basis and Design Method for Solid Rocket Motor[M]. Xi'an: Northwestern Polytechnical University Press, 2012.
4 YIN J , ZHANG H B , XIONG X , et al. Ablation Performance of carbon/carbon composite throat after a solid rocket motor ground ignition test[J]. Applied Composite Materials, 2012, 19 (3-4): 237- 245.
doi: 10.1007/s10443-011-9192-0
5 王磊, 何国强, 李江, 等. 粒子侵蚀对C/C材料烧蚀性能影响研究[J]. 西北工业大学学报, 2012, 30 (3): 320- 325.
5 WANG L , HE G Q , LI J , et al. Exploring effect of particles on ablation performance of C/C material[J]. Journal of Northwestern Polytechnical University, 2012, 30 (3): 320- 325.
6 SHAMEEL F , LI K Z , GUO L J , et al. Effect of density and fibre orientation on the behavior of carbon-carbon composites[J]. New Carbon Materials, 2012, 25 (3): 161- 166.
7 孙银洁, 李秀涛, 胡胜泊, 等. 多向编织碳/碳复合材料喉衬烧蚀细/微观结构的表征与分析[J]. 复合材料学报, 2013, 30 (增刊1): 283- 288.
7 SUN Y J , Li X T , HU S B , et al. Ablation microstructure characterization and analysis of multidimensional carbon/carbon composites throat[J]. Acta Materiae Compositae Sinica, 2013, 30 (Suppl 1): 283- 288.
8 查柏林, 黄定园, 乔素磊, 等. C/C复合材料烧蚀试验及烧蚀机理研究[J]. 固体火箭技术, 2013, 36 (5): 692- 696.
8 ZHA B L , HUANG D Y , QIAO S L , et al. Research on ablation test and ablative mechanism of carbon/carbon composite material[J]. Journal of Solid Rocket Technology, 2013, 36 (5): 692- 696.
9 丘哲明. 固体火箭发动机材料与工艺[M]. 北京: 中国宇航出版社, 1995.
9 QIU Z M . Materials and Techniques of Solid Rocket Motor[M]. Beijing: China Astronautic Publishing House, 1995.
10 杨月诚. 火箭发动机理论基础[M]. 西安: 西北工业大学出版社, 2010.
10 YANG Y C . Rocket Engine Theoretical Basis[M]. Xi'an: Northwestern Polytechnical University Press, 2010.
11 查柏林, 江鹏, 袁晓静. 多功能超音速火焰喷涂粒子速度的计算机仿真[J]. 材料保护, 2011, 44 (6): 5- 7.
11 ZHA B L , JIANG P , YUAN X J . Computed simulation of particle velocity of multifunctional high velocity oxy-fuel spraying[J]. Journal of Materials Protection, 2011, 44 (6): 5- 7.
12 黄定园. C/C复合材料的烧蚀行为及性能研究[D]. 西安:第二炮兵工程大学,2013.
12 HUANG D Y. Research on ablation behavior and properties of C/C composites[D]. Xi'an:The Second Artillery Engineering University,2013.
13 王玲玲, 嵇阿琳, 黄寒星, 等. 三维针刺C/C-SiC复合材料的烧蚀性能[J]. 固体火箭技术, 2012, 35 (4): 532- 535.
13 WANG L L , JI A L , HUANG H X , et al. Ablation properties of three dimensional needled C/C-SiC composites[J]. Journal of Solid Rocket Technology, 2012, 35 (4): 532- 535.
14 张红波, 尹健, 熊翔. C/C复合材料烧蚀性能的研究进展[J]. 材料导报, 2005, 19 (7): 97- 103.
14 ZHANG H B , YIN J , XIONG X . Research and development of the ablation performance of C/C composites[J]. Materials Review, 2005, 19 (7): 97- 103.
15 CHEN B , ZHANG L T , et al. Ablation of pierced C/C composite nozzles in an oxygen/ethanol combustion gas generator[J]. Carbon, 2009, 47, 545- 550.
doi: 10.1016/j.carbon.2008.10.009
16 尹健. SRM喉衬用炭/炭复合材料烧蚀性能研究[D].长沙:中南大学,2007.
16 YIN J. Research on ablation properties of carbon/carbon composites for SRM throat[D]. Changsha:Central South University,2007.
[1] 孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
[2] 白龙腾, 成来飞, 杨晓辉, 曹晶, 王毅. 双组元液体动力环境下3D C/SiC复合材料喷管烧蚀性能[J]. 材料工程, 2022, 50(2): 118-126.
[3] 阮家苗, 李红, 姚彧敏, 杨敏, 任慕苏, 孙晋良. 热处理温度对高导热3D C/C复合材料性能的影响[J]. 材料工程, 2021, 49(9): 128-134.
[4] 解齐颖, 张祎, 朱阳, 崔红. 超高温陶瓷改性碳/碳复合材料[J]. 材料工程, 2021, 49(7): 46-55.
[5] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
[6] 刘皓, 李克智. 两种双基体C/C复合材料的微观结构与力学性能[J]. 材料工程, 2017, 45(8): 38-42.
[7] 刘皓, 李克智. C/C复合材料不同基体炭的微观结构[J]. 材料工程, 2016, 44(7): 7-12.
[8] 查柏林, 林浩, 高双林, 罗雷, 张博文, 朱杰堂, 孙振生. 粒子浓度对C/C复合材料烧蚀行为的影响[J]. 材料工程, 2016, 44(7): 93-98.
[9] 王兵, 谭毅, 施伟, 李佳艳, 尤启凡. 硅蒸镀法制备低密度C/C复合材料表面SiC涂层[J]. 材料工程, 2015, 43(2): 1-6.
[10] 倪昕晔, 李爱军, 钟萍, 林涛, 熊信柏, 顾卫东. 不同高温处理工艺对C/C复合材料生物相容性的影响[J]. 材料工程, 2014, 0(6): 62-67.
[11] 吴世彪, 熊华平, 陈波, 程耀永. 采用Ag-Cu-Ti钎料真空钎焊SiO2f/SiO2复合陶瓷与C/C复合材料[J]. 材料工程, 2014, 0(10): 16-20.
[12] 李斌, 陈招科, 熊翔. 梯度分布TaC界面改性C/C复合材料的微观结构与力学性能[J]. 材料工程, 2013, 0(9): 6-10.
[13] 吴凤秋, 张保法. C/C复合材料表面硬度对抗氧化性能的影响[J]. 材料工程, 2013, 0(10): 98-102.
[14] 秦优琼, 于治水. 钎焊工艺参数对C/C复合材料/Cu/Mo/TC4 钎焊接头微观组织的影响[J]. 材料工程, 2012, 0(8): 78-82.
[15] 杨彩云, 胡振英, 周红英. 三维机织预制体结构对C/C复合材料力学性能的影响[J]. 材料工程, 2009, 0(9): 29-32,37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn