Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (2): 17-23    DOI: 10.11868/j.issn.1001-4381.2015.000528
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
SiCP/Al-Cu复合材料的高温热变形行为
程明阳1, 郝世明2, 谢敬佩3,4, 王爱琴3,4, 马窦琴3,4, 孙亚丽3
1 中国空空导弹研究院, 河南 洛阳 471000;
2 河南科技大学 物理工程学院, 河南 洛阳 471023;
3 河南科技大学 材料科学与工程学院, 河南 洛阳 471023;
4 有色金属共性技术河南省协同创新中心, 河南 洛阳 471023
Hot Deformation Behavior of SiCP/A1-Cu Composite
CHENG Ming-yang1, HAO Shi-ming2, XIE Jing-pei3,4, WANG Ai-qin3,4, MA Dou-qin3,4, SUN Ya-li3
1 China Airborne Missile Academy, Luoyang 471000, Henan, China;
2 School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, Henan, China;
3 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, Henan, China;
4 Collaborative Innovation Center of Non-ferrous Materials of Henan Province, Luoyang 471023, Henan, China
全文: PDF(3150 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用Gleeble-1500D热模拟试验机对SiCp/Al-Cu复合材料进行压缩实验,研究其在温度为350~500℃、应变速率为0.01~10s-1条件下的高温塑性变形行为。由实验得出变形过程中的应力-应变曲线,建立了热变形本构方程和加工图。结果表明:复合材料高温流动应力-应变曲线主要以动态再结晶为特征,峰值应力随变形温度的降低或应变速率的升高而增加。其热压缩变形时的流变应力可采用Zener-Hollomon参数的双曲正弦形式来描述,在实验条件下平均热变形激活能Q为320.79kJ/mol。确定了加工图中的稳定区和失稳区,分析了加工图中不同区域的显微组织结构,失稳区存在颗粒破裂、孔洞等。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程明阳
郝世明
谢敬佩
王爱琴
马窦琴
孙亚丽
关键词 SiCp/Al-Cu复合材料热变形应力-应变曲线本构方程加工图显微组织    
Abstract:Using the Gleeble-1500D simulator, the high temperature plastic deformation behavior of SiCp/Al-Cu composite were investigated at 350-500℃ with the strain rate of 0.01-10s-1. The true stress-strain curves were obtained in the tests. Constitutive equation and processing map were established. The results show that the softening mechanism of dynamic recrystallization is a feature of high-temperature flow stress-strain curves of SiCp/A1-Cu composite, and the peak stress increases with the decrease of deformation temperature or the increase of strain rate.The flow stress behavior of the composite during hot compression deformation can be represented by a Zener-Hollomon parameter in the hyperbolic sine form. Its activation energy for hot deformation Q is 320.79kJ/mol. The stable regions and the instability regions in the processing map were identified and the microstructures in different regions of processing map were studied.There are particle breakage and void in the instability regions.
Key wordsSiCp/Al-Cu composite    hot deformation    stress-strain curve    constitutive equation    processing map    microstructure
收稿日期: 2015-04-29      出版日期: 2017-02-23
中图分类号:  TB333  
通讯作者: 谢敬佩(1957-),男,教授,博导,从事专业:金属材料的凝固组织控制及强韧化,联系地址:河南省洛阳市开元大道263号河南科技大学校长办公室(471023),xiejp@haust.edu.cn     E-mail: xiejp@haust.edu.cn
引用本文:   
程明阳, 郝世明, 谢敬佩, 王爱琴, 马窦琴, 孙亚丽. SiCP/Al-Cu复合材料的高温热变形行为[J]. 材料工程, 2017, 45(2): 17-23.
CHENG Ming-yang, HAO Shi-ming, XIE Jing-pei, WANG Ai-qin, MA Dou-qin, SUN Ya-li. Hot Deformation Behavior of SiCP/A1-Cu Composite. Journal of Materials Engineering, 2017, 45(2): 17-23.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000528      或      http://jme.biam.ac.cn/CN/Y2017/V45/I2/17
[1] 杨旭东,邹田春,陈亚军,等.碳纳米管和氧化铝混杂增强铝基复合材料的制备及力学性能[J].材料工程,2016,44(7):67-72. YANG X D,ZOU T C,CHEN Y J,et al.Fabrication and mechanical properties of aluminum matrix composites reinforced with carbon nanotubes and alumina[J].Journal of Materials Engineering,2016,44(7):67-72.
[2] MARUYAMA B,HUNT W H.Discontinuously reinforced aluminum:current status and future direction[J].Journal of the Minerals,Metals and Materials Society,1999,51(11):59-61.
[3] 郝世明,谢敬佩.30%SiCp/2024A1复合材料的热变形行为及加工图[J].粉末冶金材料科学与工程,2014,19(1):1-7. HAO S M,XIE J P.Hot deformation behavior and processing map of 30%SiCp/2024A1 composite[J].Materials Science and Engineering of Powder Metallurgy,2014,19(1):1-7.
[4] GOSWAMI R K,SIKAND R,DHAR A,et al.Extrusion characteristics of aluminum alloy/SiCp metal matrix composites[J].Materials Science and Technology,1999,15(4):443-449.
[5] ZHANG B L,MACLEAN M S,BAKER T N.Hot deformation behaviour of aluminum alloy 6061/SiCp MMCs made by powder metallurgy route[J].Materials Science and Technology,2000,16(7-8):897-902.
[6] SRIVASTAVA V C,JINDAL V,UHLENWINKEL V,et al.Hot-deformation behaviour of spray-formed 2014 Al+SiCp metal matrix composites[J].Materials Science and Engineering:A,2008,477(1):86-95.
[7] 吴文祥,韩逸,钟皓,等.2026 铝合金热压缩变形流变应力行为[J].中国有色金属学报,2009,19(8):1403-1408. WU W X,HAN Y,ZHONG H,et al.Flow stress behavior of 2026 aluminum alloy under hot compression deformation[J].The Chinese Journal of Nonferrous Metals,2009,19(8):1403-1408.
[8] 赵明久,刘越,毕敬.碳化硅颗粒增强铝基复合材料(SiCp/2024Al) 的热变形行为[J].金属学报,2003,39(2):221-224. ZHAO M J,LIU Y,BI J.Hot deformation behavior of silicon carbide particulate reinforced 2024 aluminum based composite[J].Acta Metallurgica Sinica,2003,39(2):221-224.
[9] 贾乐,陈康华,陈送义,等.7085 铝合金的高温压缩流变应力及软化行为[J].粉末冶金材料科学与工程,2012,17(4):423-429. JIA L,CHEN K H,CHEN S Y,et al.Flow stress and softening behavior of 7085 aluminum alloy during compression deformation at elevated temperature[J].Materials Science and Engineering of Powder Metallurgy,2012,17(4):423-429.
[10] 陈学海.7085铝合金热变形行为及加工图研究[D].长沙:中南大学,2011. CHEN X H.Hot deformation and processing map of 7075 aluminum alloy[D].Changsha:Central South University,2011.
[11] 向伟.B4Cp/6061铝基复合材料的热变形特征及加工图[D].长沙:中南大学,2012. XIANG W.Hot deformation and processing map of B4Cp/6061Al composite[D].Changsha:Central South University,2012.
[12] 张建军,郭胜利.碳化硅颗粒增强6168铝基复合材料热变形本构关系[J].西华大学学报(自然科学版),2014,33(4):76-81. ZHANG J J,GUO S L.Constitutive relationship of hot deformation for Al alloy matrix composites 6168 reinforced by SiC particulates[J].Journal of Xihua University(Natural Science Edition),2014,33(4):76-81.
[13] PATEL A,DAS S,PRASAD BK.Compressive deformation behavior of Al alloy (2014)-10wt.%SiCp composite:effects of strain rates and temperatures[J].Materials Science and Engineering:A,2011,530:225-232.
[14] 张施琦,冯定,张跃,等.新型超高强度热冲压用钢的热变形行为及本构关系[J].材料工程,2016,44(5):15-21. ZHANG S Q,FENG D,ZHANG Y,et al.Hot deformation behavior and constitutive model of advanced ultra-high strength hot stamping steel[J].Journal of Materials Engineering,2016,44(5):15-21.
[15] SELLARS C M,TEGART W J M.Hot workability[J].International Materials Reviews,1971,17(1):1-24.
[16] SELLARS C M,MCTEGART W J.On the mechanism of hot deformation[J].Acta Metallurgica,1966,14(9):1136-1138.
[17] 熊毅,熊良银,张凌峰,等.GH4199合金的热变形行为与微观组织演变[J].中国有色金属学报,2010,20(4):655-661. XIONG Y,XIONG L Y,ZHANG L F,et al.Hot deformation behavior and microstructure evolution of superalloy GH4199[J].The Chinese Journal of Nonferrous Metals,2010,20(4):655-661.
[1] 周强, 程军, 于振涛, 崔文芳. 一种新型近β型Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe合金热变形行为[J]. 材料工程, 2019, 47(6): 121-128.
[2] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[3] 万鹏, 王克鲁, 鲁世强, 陈虚怀, 周峰. 基于应变补偿和PSO-BP神经网络的Ti-2.7Cu合金本构关系[J]. 材料工程, 2019, 47(4): 113-119.
[4] 宋仁国. 微弧氧化技术的发展及其应用[J]. 材料工程, 2019, 47(3): 50-62.
[5] 赵云松, 郭媛媛, 赵敬轩, 张晓铁, 刘砚飞, 杨岩, 姜华, 张剑, 骆宇时. 微量Hf对大角度晶界含Re双晶合金高温持久性能的影响[J]. 材料工程, 2019, 47(2): 76-83.
[6] 王宇, 熊柏青, 李志辉, 温凯, 黄树晖, 李锡武, 张永安. 新型超高强Al-Zn-Mg-Cu合金热压缩变形行为及微观组织特征[J]. 材料工程, 2019, 47(2): 99-106.
[7] 钟蛟, 彭志方, 陈方玉, 彭芳芳, 刘省, 石振斌. P92钢奥氏体化后的冷却方式对650℃时效组织及硬度稳定性的影响[J]. 材料工程, 2019, 47(1): 119-124.
[8] 黄高仁, 孙乙萌, 张利, 刘玉林. Mg含量对亚快速凝固Al-Zn-Mg-Cu-Zr合金组织与性能的影响[J]. 材料工程, 2018, 46(9): 109-114.
[9] 彭竹琴, 李俊魁, 卢金斌, 马明星, 吴玉萍. 稀土CeO2对AlCoCuFeMnNi高熵合金组织与性能的影响[J]. 材料工程, 2018, 46(8): 91-97.
[10] 邓德伟, 牛婷婷, 田鑫, 刘海英, 孙奇, 张林. 水导轴承等离子堆焊Ni60合金组织及其耐腐蚀性能[J]. 材料工程, 2018, 46(5): 106-111.
[11] 肖代红, 刘彧, 余永新, 周鹏飞, 刘文胜, 马运柱. 放电等离子烧结对TiB2/AlCoCrFeNi复合材料组织与性能的影响[J]. 材料工程, 2018, 46(3): 22-27.
[12] 龚玉兵, 王善林, 李宏祥, 柯黎明, 陈玉华, 马彬. 脉冲宽度对激光熔覆FeSiB涂层组织与硬度的影响[J]. 材料工程, 2018, 46(3): 74-80.
[13] 刘伟, 熊华平, 李能, 陈波. 激光熔化沉积工艺对Nb-16Si二元合金显微组织的影响[J]. 材料工程, 2018, 46(2): 27-33.
[14] 贺毅强, 徐虎林, 钱晨晨, 丁云飞, 冯文, 陈劲松, 李化强, 冯立超. 基体成分对SiCP/Al-Fe-V-Si复合材料显微组织与性能的影响[J]. 材料工程, 2018, 46(12): 124-130.
[15] 邢如飞, 许星元, 黄双君, 王磊, 周松, 许良. 激光沉积修复TA15钛合金微观组织及力学性能[J]. 材料工程, 2018, 46(12): 144-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn