Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (3): 66-72    DOI: 10.11868/j.issn.1001-4381.2015.000552
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
5A06铝合金TIG丝材-电弧增材制造工艺
黄丹1,2, 朱志华3, 耿海滨2, 熊江涛2, 李京龙2, 张赋升2
1. 西北工业大学 凝固技术国家重点实验室, 西安 710072;
2. 西北工业大学 摩擦焊接陕西省重点实验室, 西安 710072;
3. 北京航天动力研究所, 北京 100076
TIG Wire and Arc Additive Manufacturing of 5A06 Aluminum Alloy
HUANG Dan1,2, ZHU Zhi-hua3, GENG Hai-bin2, XIONG Jiang-tao2, LI Jing-long2, ZHANG Fu-sheng2
1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China;
2. Shaanxi Key Laboratory of Friction Welding Technology, Northwestern Polytechnical University, Xi'an 710072, China;
3. Beijing Aerospace Propulsion Institute, Beijing 100076, China
全文: PDF(26548 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 选用φ1.2mm的5A06铝焊丝为成形材料,研究TIG丝材-电弧增材制造工艺。以TIG焊机为电源(交流模式),以四轴联动数控机床为运动机构,研究单层和多层成形时预热温度和电流对成形形貌的影响,观察成形件微观组织,并测试其力学性能。建立了单层单道基板预热温度和电弧峰值电流工艺规范带判据,以保证良好成形。结果表明:成形件的高度从第一层的3.4mm急剧下降,直到第8层后高度稳定在1.7mm。层间组织为细小的树枝晶和等轴晶;层间结合处组织最粗大,为柱状树枝晶;顶部组织最细小,由细小的树枝晶转变为等轴晶。成形件的力学性能各向同性,抗拉强度为295MPa,伸长率为36%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄丹
朱志华
耿海滨
熊江涛
李京龙
张赋升
关键词 TIG丝材-电弧增材制造5A06铝合金成形微观组织力学性能    
Abstract:Wire and arc additive manufacturing(WAAM) was investigated by tungsten inert gas arc welding method(TIG), in which φ1.2mm filler wire of aluminum alloy 5A06(Al-6Mg-Mn-Si) was selected as deposition metal. The prototyping process was conducted by a TIG power source(working in AC mode) manipulated by a four-axis linkage CNC machine. Backplate preheating temperature and arc current on deposited morphologies of single layer and multi-layer were researched. The microstructure was observed and the sample tensile strength was tested. For single layer, a criterion that describes the correlation between backplate preheating temperature and arc peak current, of which both contribute to the smoothening of the deposited layer. The results show that the layer height drops sharply from the first layer of 3.4mm and keeps at 1.7mm after the 8th layer. Fine dendrite grain and equiaxed grain are found inside a layer and coarsest columnar dendrite structure at layer boundary zone; whereas the microstructure of top region of the deposited sample changes from fine dendrite grain to equiaxed grain that turns to be the finest structure. Mechanical property of the deposited sample is isotropic, in which the tensile strength is approximately 295MPa with the elongation around 36%.
Key wordsTIG    WAAM    5A06 aluminum alloy    prototyping    microstructure    mechanical property
收稿日期: 2015-05-04      出版日期: 2017-03-22
中图分类号:  TG455  
通讯作者: 李京龙(1964-),男,教授,博士,从事专业:摩擦焊与增材制造,联系地址:陕西省西安市碑林区友谊西路127号西北工业大学公字楼(710072),E-mail:lijinglg@nwpu.edu.cn     E-mail: lijinglg@nwpu.edu.cn
引用本文:   
黄丹, 朱志华, 耿海滨, 熊江涛, 李京龙, 张赋升. 5A06铝合金TIG丝材-电弧增材制造工艺[J]. 材料工程, 2017, 45(3): 66-72.
HUANG Dan, ZHU Zhi-hua, GENG Hai-bin, XIONG Jiang-tao, LI Jing-long, ZHANG Fu-sheng. TIG Wire and Arc Additive Manufacturing of 5A06 Aluminum Alloy. Journal of Materials Engineering, 2017, 45(3): 66-72.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000552      或      http://jme.biam.ac.cn/CN/Y2017/V45/I3/66
[1] HERRANZ S, CAMPA F J, DE LACALLE L N L, et al. The milling of airframe components with low rigidity:a general approach to avoid static and dynamic problems[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2005,219(11):789-801.
[2] 熊俊. 多层单道GMA增材制造成形特性及熔敷尺寸精确控制[D]. 哈尔滨:哈尔滨工业大学,2014. XIONG J. Forming characteristics in multi-layer single-bead GMA additive manufacturing and accurate control for deposition dimension[D]. Harbin:Harbin Institute of Technology,2014.
[3] MUGHAL M, FAWAD H, MUFTI R, et al. Three-dimensional finite-element modelling of deformation in weld-based rapid prototyping[J]. Journal of Mechanical Engineering Science,2006,220(6):875-885.
[4] 张文钺.焊接冶金学(基本原理)[M]. 北京:机械工业出版社,1996. ZHANG W Y. Welding Metallurgy (Fundamental Principle)[M]. Beijing:China Machine Press,1996.
[5] 刘望兰. 铝合金TIG电弧快速成型工艺的研究[D]. 天津:天津大学,2007. LIU W L. Rapid prototyping technology of Al-alloy parts by AC-TIG[D]. Tianjin:Tianjin University,2007.
[6] OUYANG J H, WANG H, KOVACEVIC R, et al. Rapid prototyping of 5356-aluminum alloy based on variable polarity gas tungsten arc welding process control and microstructure[J]. Materials and Manufacturing Processes,2002,17(1):103-124.
[7] WANG H, JIANG W, OUYANG J H, et al. Rapid prototyping of 4043 Al-alloy parts by VP-GTAW[J]. Journal of Materials Processing Technology,2004,148(1):93-102.
[8] 姜云禄. 基于冷金属过渡技术的铝合金快速成形技术及工艺研究[D]. 哈尔滨:哈尔滨工业大学,2013. JIANG Y L. Research on the rapid prototyping technology and forming process of aluminum alloy based on the CMT[D]. Harbin:Harbin Institute of Technology,2013.
[9] WANG F D, WILLIAMS S, RUSH M, et al. Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy[J]. Internal Journal of Advanced Manufacturing Technology,2011,57(5-8):597-603.
[10] BAUFELD B, BIEST O, GAULT R, et al. Microstructure of Ti-6Al-4V specimens produced by shaped metal deposition[J]. International Journal of Materials Research,2009,100(11):1536-1542.
[11] BAUFELD B, BIEST O. Mechanical properties of Ti-6Al-4V specimens produced by shaped metal deposition[J]. Science and Technology of Advanced Materials,2009,10(1):1-10.
[12] BAUFELD B, BIEST O, GAULT R, et al. Additive manufacturing of Ti-6Al-4V components by shaped metal deposition:microstructure and mechanical properties[J]. Materials & Design,2010,31(Suppl 1):106-111.
[13] CLARK D, BACHE M R, WHITTAKER M T, et al. Microstructural characterization of a polycrystalline nickel-based superalloy processed via tungsten-intert-gas-shaped metal deposition[J]. Metallurgical and Materials Transactions B,2010,41(6):1346-1353.
[14] 徐富家, 吕耀辉, 刘玉欣, 等. 脉冲等离子弧快速成形Inconel 625组织性能研究[J]. 材料工程,2012,(11):6-11. XU F J, LV Y H, LIU Y X, et al. Microstructure and mechanical properties of Inconel 625 components deposited by pulse plasma arc rapid prototyping[J]. Journal of Materials Engineering, 2012,(11):6-11.
[15] 刘锦辉, 刘邦涛, 谢雪冬, 等. 高功率光纤激光熔化成形IN718的工艺及性能[J]. 航空材料学报,2015,35(4):1-7. LIU J H, LIU B T, XIE X D, et al. Process and properties of IN718 formed by high-power fiber laser melting[J]. Journal of Aeronautical Materials,2015,35(4):1-7.
[16] BAUFELD B, BIEST O, GAULT R, et al. Microstructure of Ti-6Al-4V specimens produced by shaped metal deposition[J]. International Journal of Materials Research,2009,100(11):1536-1542.
[17] WANG F D, WILLIAMS S, COLEGROVE P, et al. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V[J]. Metallurgical and Materials Transactions A,2013,44(2):968-977.
[1] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[2] 王聃, 陶德华, 黄秀玲, 华子恺. 聚甲基丙稀酸羟乙酯甘油凝胶仿软骨材料的制备与性能[J]. 材料工程, 2019, 47(7): 71-75.
[3] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[4] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[5] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[6] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[7] 欧阳佩旋, 弭光宝, 李培杰, 何良菊, 曹京霞, 黄旭. NiCrAl/YSZ/NiCrAl-B.e复合涂层对α+β型高温钛合金燃烧产物的影响[J]. 材料工程, 2019, 47(5): 43-52.
[8] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[9] 唐文珅, 杨新岐, 李胜利, 李会军. 焊接参数对铁素体不锈钢搅拌摩擦焊接头组织及性能的影响[J]. 材料工程, 2019, 47(5): 115-121.
[10] 黄利, 黄光杰, 吴晓东, 曹玲飞, 李佳. 预处理工艺对双辊铸轧3003铝合金再结晶行为的影响[J]. 材料工程, 2019, 47(4): 135-142.
[11] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[12] 崔岩, 项俊帆, 曹雷刚, 杨越, 刘园. 碳化硅颗粒表面吸附质对铝基复合材料制备及力学性能的影响[J]. 材料工程, 2019, 47(4): 160-166.
[13] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[14] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[15] 贺毅强, 徐虎林, 钱晨晨, 冯立超, 乔斌, 尚峰, 李化强. 机械合金化后注射成形制备Cu/Al2O3复合材料的显微组织与力学性能[J]. 材料工程, 2019, 47(3): 154-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn