Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (2): 46-53    DOI: 10.11868/j.issn.1001-4381.2015.000555
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于高温熔凝法Al2O3/ZrO2/YAG共晶陶瓷显微组织演变规律
付雪松1, 孙胃涛1, 韩文波2, 李康1, 陈国清1, 周文龙1
1 大连理工大学 材料科学与工程学院, 辽宁 大连 116085;
2 哈尔滨工业大学 特种环境复合材料技术国防科技重点实验室, 哈尔滨 150080
Microstructure Evolution of Melt-grown Al2O3/ZrO2/YAG Eutectic Ceramic by High Temperature Fused Method
FU Xue-song1, SUN Wei-tao1, HAN Wen-bo2, LI Kang1, CHEN Guo-qing1, ZHOU Wen-long1
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116085, Liaoning, China;
2 Key Laboratory of Science and Technology for National Defence on Advance Composite in Special Environment, Harbin Institute of Technology, Harbin 150080, China
全文: PDF(11409 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 作为超高温结构材料,共晶氧化物陶瓷的力学性能和显微组织密切相关。采用高温熔凝法制备Al2O3/ZrO2/YAG共晶陶瓷体,研究熔体温度和结晶种子对凝固组织影响规律,运用经典形核机制和Jackson-Hunt共晶生长模型探讨了凝固组织的演变机理。研究表明,随着熔体温度升高(1750~2000℃),凝固体物相组成从α-Al2O3,c-ZrO2和YAG转变为α-Al2O3,c-ZrO2和亚稳相YAP。凝固组织依次经历:非共晶Al2O3/ZrO2/YAG、不规则共晶Al2O3/ZrO2/YAG、纳米纤维状共晶Al2O3/ZrO2/YAG和复杂粗大的亚稳复合陶瓷Al2O3/ZrO2/YAP。分析表明,凝固组织的演变源于异质晶核点不断钝化导致形核过冷度和凝固路径改变,所以合理选择熔体温度和结晶种子是共晶组织调控的关键。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付雪松
孙胃涛
韩文波
李康
陈国清
周文龙
关键词 高温熔凝法共晶陶瓷过冷度凝固组织钝化    
Abstract:As ultra-high-temperature structural materials, the mechanical properties of eutectic oxide ceramics are closely related with microstructure characteristics. Melt-grown Al2O3/ZrO2/YAG eutectic ceramic was prepared by high temperature fused method. Effect of melt temperature and crystal seed on solidification microstructure evolution was investigated, the structure evolution mechanism was discussed using the classical nucleation mechanism and Jack-hunt mode. Experiment results show the phase composition of solidified samples changes from α-Al2O3/c-ZrO2/YAG to α-Al2O3/c-ZrO2/YAP as the melt temperature increases from 1750℃ to 2000℃. And the solidification microstructure evolves as follows:non-eutectic ceramic Al2O3/ZrO2/YAG, irregular eutectic ceramic Al2O3/ZrO2/YAG, nano-scale regular fibrous pattern eutectic Al2O3/ZrO2/YAG, and complex coarse metastable composite ceramic Al2O3/ZrO2/YAP. Analysis shows that microstructure evolution is resulted from heterogeneous passivation with elevating temperature followed by variations of nucleation undercooling and solidification path. Therefore, choosing reasonable melt temperature and crystal seed are the key rules to control the microstructure of Al2O3/ZrO2/YAG eutectic ceramic.
Key wordshigh temperature fused method    eutectic ceramic    undercooling    solidification microstructure    passivation
收稿日期: 2015-05-04      出版日期: 2017-02-23
中图分类号:  T125.4  
通讯作者: 陈国清(1984-),男,博士生导师,主要从事高性能陶瓷构件烧结及成形和材料塑性加工过程及组织性能的控制等方面的研究,联系地址:大连理工大学材料科学与工程学院(116085),gqchen@dlut.edu.cn.     E-mail: gqchen@dlut.edu.cn.
引用本文:   
付雪松, 孙胃涛, 韩文波, 李康, 陈国清, 周文龙. 基于高温熔凝法Al2O3/ZrO2/YAG共晶陶瓷显微组织演变规律[J]. 材料工程, 2017, 45(2): 46-53.
FU Xue-song, SUN Wei-tao, HAN Wen-bo, LI Kang, CHEN Guo-qing, ZHOU Wen-long. Microstructure Evolution of Melt-grown Al2O3/ZrO2/YAG Eutectic Ceramic by High Temperature Fused Method. Journal of Materials Engineering, 2017, 45(2): 46-53.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000555      或      http://jme.biam.ac.cn/CN/Y2017/V45/I2/46
[1] ZHANG J, SU H, SONG K, et al. Microstructure, growth mechanism and mechanical property of Al2O3-based eutectic ceramic in situ composites[J]. Journal of the European Ceramic Society, 2011, 31(7):1191-1198.
[2] WAKU Y, SAKATA S, MITANI A, et al. Temperature dependence of flexural strength and microstructure of Al2O3/Y3Al5O12/ZrO2 ternary melt growth composites[J]. Journal of Materials Science, 2002, 37(14):2975-2982.
[3] CRISTINA M M, OLIETE P B, LARREA A, et al. Directionally solidified Al2O3-Er3Al5O12-ZrO2 eutectic ceramics with interpenetrating or nanofibrillar microstructure:residual stress analysis[J]. Journal of the American Ceramic Society, 2012, 95(3):1138-1146.
[4] OCHIAI S, IKEDA S, IWAMOTO S, et al. Residual stresses in YAG phase of melt growth Al2O3/YAG eutectic composite estimated by indentation fracture test and finite element analysis[J]. Journal of the European Ceramic Society, 2008, 28(12):2309-2317.
[5] ECHIGOYA J, TAKABAYASHI Y, SASAKI K, et al. Solidification microstructure of Y2O3-added Al2O3-ZrO2 eutectic[J]. Transactions of the Japan Institute of Metals, 1986, 27(2):102-107.
[6] ECHIGOYA J, TAKABAYASHI Y, SUTO H, et al. Structure and crystallography of directionally solidified Al2O3-ZrO2-Y2O3 eutectic by the floating zone-melting method[J]. Journal of Materials Science Letters, 1986, 5(2):150-152.
[7] LAKIZA S M. Directionally solidified eutectics in the Al2O3-ZrO2-Ln(Y)2O3 systems (Review)[J]. Powder Metallurgy and Metal Ceramics, 2009, 48(1-2):42-59.
[8] WAKAI F, KODAMA Y, SAKAGUCHIS, et al. A superplastic covalent crystal composite[J]. Nature, 1990, 344(6265):421-423.
[9] MATSON L E, HECHT N. Creep of directionally solidified alumina/YAG eutectic monofilaments[J]. Journal of the European Ceramic Society, 2005, 25(8):1225-1239.
[10] 于建政,张军,苏海军,等.激光双面区熔Al2O3/Y3Al5O12 共晶自生复合陶瓷的制备与表征[J].无机材料学报, 2012, 27(8):843-848. YU J Z, ZHANG J, SU H J, et al. Fabrication and characterization of Al2O3/Y3Al5O12 eutectic in situ composite ceramics by double side laser zone remelting method[J]. Journal of Inorganic Material, 2012, 27(8):843-848.
[11] 王进,刘俊成,曹献莹,等.感应区熔法制备Al2O3/MgAl2O4/ZrO2共晶陶瓷[J].人工晶体学报, 2013, 42(9):1814-1818. WANG J, LIU J C, CAO X Y, et al. Preparation Al2O3/MgAl2O4/ZrO2 eutectic ceramic by induction zone melting method[J]. Journal of Synthetic Crystals, 2013, 42(9):1814-1818.
[12] 赵忠民,张龙,宋义刚,等.超重力下自挤压辅助燃烧合成Al2O3-ZrO2(Y2O3)共晶陶瓷[J].稀有金属材料与工程, 2011, 40(增刊1):203-206. ZHAO Z M, ZHANG L, SONG Y G, et al. Al2O3-ZrO2 (Y2O3) eutectic ceramics preparing by self-pressing assisting combustion synthesis under high gravity[J]. Rare Metal Materials and Engineering, 2011, 40(Suppl 1):203-206.
[13] ZHAO Z M, ZHANG L, SONG Y G, et al. Microstructures and properties of rapidly solidified Y2O3 doped Al2O3/ZrO2 composites prepared by combustion synthesis[J]. Scripta Mater, 2006, 55(9):819-822.
[14] FU X S, CHEN G Q, ZHOU W L, et al. Microstructure refinement of melt-grown Al2O3/YAG/ZrO2 eutectic composite by a new method:melt superheating treatment[J]. Scripta Materialia, 2013, 68(9):731-734.
[15] CHEN G Q, FU X S, ZHOU W L, et al. Effect of cooling rate on the microstructure and mechanical properties of melt-grown Al2O3/YAG/ZrO2 eutectic ceramic[J]. Journal of the European Ceramic Society, 2012, 32(16):4195-4204.
[16] LAKIZA S M, LOPATO L M. Stable and metastable phase relations in the system alumina-zirconia-yttria[J]. Journal of the American Ceramic Society, 1997, 80(4):893-902.
[17] GERVAIS M, LEFLOCH S, RIFFLET J C, et al. Effect of the melt temperature on the solidification process of liquid garnets Ln3Al5O12 (Ln=Dy, Y, and Lu)[J]. Journal of the American Ceramic Society, 1992, 75(11):3166-3168.
[18] BARIN I, PLATZKI G. Thermochemical Data of Pure Substances[M]. Weinheim:VCH Verlagsgesellschaft mbH, 1995.
[19] MIZUTANI Y, YASUDA H, OHNAKA I, et al. Undercooled melt formation by melting of metastable eutectic structure in Al2O3-Y2O3-ZrO2 system[J]. Materials Transactions, 2002, 43(11):2847-2854.
[20] HAY R S. Kinetics and deformation during the reaction of yttrium-aluminum perovskite and alumina to yttrium-aluminum garnet[J]. Journal of the American Ceramic Society, 1994, 77(6):1473-1485.
[21] NOTTOFF C, FEUERBACHER B, FRANZ H, et al. Direct determination of metastable phase diagram by synchrotron radiation experiments on undercooled metallic melts[J]. Physical Review Letters, 2001, 86(6):1038-1041.
[1] 常增花, 王建涛, 李文进, 武兆辉, 卢世刚. 锂离子电池硅基负极界面反应的研究进展[J]. 材料工程, 2019, 47(2): 11-25.
[2] 邓仲华, 刘其斌, 徐鹏, 姚志浩. 方形光斑激光冲击强化金属表面的耐腐蚀性能及机理[J]. 材料工程, 2018, 46(8): 140-147.
[3] 孙伟, 朱立群, 李卫平, 刘慧丛. 硅溶胶改性水性丙烯酸树脂对镀锌三价铬钝化膜的封闭作用[J]. 材料工程, 2018, 46(12): 110-116.
[4] 黄高仁, 孙乙萌, 张利, 刘玉林. Ce对Al-Zn-Mg-Cu合金亚快速凝固铸造组织的影响[J]. 材料工程, 2017, 45(11): 102-107.
[5] 王国材, 肖小波, 陈艳萍, 王晨. Ce68Al10Cu20Nb2大块非晶表面钝化膜的研究[J]. 材料工程, 2016, 44(5): 72-78.
[6] 张艳, 李倩, 王胜刚. 2507双相不锈钢在NaClO溶液中的腐蚀性能[J]. 材料工程, 2016, 44(1): 108-114.
[7] 王晶, 尚新春, 路民旭, 张雷. 316L不锈钢在不同环境中点蚀形核研究[J]. 材料工程, 2015, 43(9): 12-18.
[8] 周和荣, 揭敢新, 马坚. 聚酯粉末涂层在模拟海洋环境中的腐蚀行为[J]. 材料工程, 2013, 0(9): 48-53,59.
[9] 程从前, 付琴琴, 曹铁山, 赵杰. 钝化膜质量对奥氏体不锈钢耐蚀性的影响及显色检测[J]. 材料工程, 2013, (8): 65-69.
[10] 彭建, 佘欢, 陶健全, 王小红, 潘复生. 冷却过程对AZ61镁合金凝固组织的影响[J]. 材料工程, 2012, 0(2): 58-61.
[11] 王海人, 石日华, 屈钧娥, 刘少波, 陈庚, 郭兴蓬. 不锈钢植酸钝化工艺及其耐腐蚀性能研究[J]. 材料工程, 2012, 0(11): 77-81.
[12] 黄立国, 付大军, 高志玉. 连续电流场在金属凝固过程中的应用研究[J]. 材料工程, 2011, 0(4): 94-97.
[13] 杨晓华, 陈伟庆, 郝占全. Ti对Fe-Ni膨胀合金凝固组织的影响[J]. 材料工程, 2010, 0(9): 7-9,14.
[14] 郝丽梅. 相场法模拟流动下非等温多晶粒枝晶生长形貌研究[J]. 材料工程, 2010, 0(6): 1-6,11.
[15] 魏智强, 闫晓燕, 汪宝珍, 朱林, 杨晓红, 闫鹏勋. NiO包覆Ni纳米颗粒的制备及其氧化特性研究[J]. 材料工程, 2010, 0(4): 89-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn