Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (2): 32-38    DOI: 10.11868/j.issn.1001-4381.2015.000579
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
多层金属复合板的热轧制备方法
余伟(), 王班, 贺婕, 徐士新, 雷力齐
北京科技大学 冶金工程研究院, 北京 100083
Hot-rolled Process of Multilayered Composite Metal Plate
Wei YU(), Ban WANG, Jie HE, Shi-xin XU, Li-qi LEI
Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(4281 KB)   HTML ( 12 )  
输出: BibTeX | EndNote (RIS)      
摘要 

提高成材率和复合界面质量是制备多层复合板的难题。本工作提出一种多层复合板的高成材率热轧制备方法,即采用氩弧焊固定各层原料板组成坯料,坯料放入金属套后抽真空,再加热到1000~1200℃进行多道次轧制,成功制备出2.5mm厚的67层复合板。通过金相显微镜及电子显微镜观察和分析了界面组织及元素扩散行为,采用拉伸、剪切实验测定复合板的力学性能,并分析其剪切断口。结果表明:采用两步组坯复合和工艺优化,多层复合板的轧制成材率达90%以上。多层复合板具有良好的结合界面,其抗剪强度达到241MPa。9Cr18和1Cr17镍中间层可以较为有效地阻碍界面附近的碳扩散并改善复合板的组织特征。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余伟
王班
贺婕
徐士新
雷力齐
关键词 多层金属复合板热轧工艺组织力学性能扩散    
Abstract

For multi-layer plate, it is a difficult problem to increase product yield rate and improve bonding interface quality. A high yield hot-rolled method of multilayered plate was proposed. The raw strips and plate were fixed by argon arc welding. The combined billet was put into a metal box and vacuum pumped, and then heated and rolled by multi passes at the temperature of 1000-1200℃. The 67 layered plate with the thickness of 2.5mm was successfully produced. The interfacial microstructures and diffusion behavior were investigated and analyzed by optical microscopy and scan electronic microscopy. The tensile and shear strength were tested,and the shear fractures were analyzed. The results show that the multilayered plate yield rate is more than 90% by two steps billet combination method and rolling process optimization. The good bonding interface quality is obtained, the shear strength of multilayered plate reaches 241 MPa. Nickel interlayer between 9Cr18 and 1Cr17 can not only prevent the diffusion of carbon, but also improve the microstructure characteristics.

Key wordsmultilayered plate    hot-rolled process    microstructure    mechanical property    diffusion
收稿日期: 2015-05-11      出版日期: 2017-02-23
中图分类号:  TG335.8  
通讯作者: 余伟     E-mail: yuwei@nercar.ustb.edu.cn
作者简介: 余伟(1968-),男,副研究员,博士,从事材料组织性能控制及金属复合材料制备研究,联系地址:北京科技大学冶金工程研究院(100083),yuwei@nercar.ustb.edu.cn
引用本文:   
余伟, 王班, 贺婕, 徐士新, 雷力齐. 多层金属复合板的热轧制备方法[J]. 材料工程, 2017, 45(2): 32-38.
Wei YU, Ban WANG, Jie HE, Shi-xin XU, Li-qi LEI. Hot-rolled Process of Multilayered Composite Metal Plate. Journal of Materials Engineering, 2017, 45(2): 32-38.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000579      或      http://jme.biam.ac.cn/CN/Y2017/V45/I2/32
MaterialCSiMnCrSPNiFe
2Cr130.16-0.25≤1.00≤1.0012-14≤0.03≤0.035-Bal
1Cr170.12≤0.75≤1.016-18≤0.03≤0.04-Bal
9Cr180.9-1.0≤0.8≤0.817-19≤0.03≤0.035-Bal
Ni≤0.10≤0.10≤0.05-≤0.005≤0.002Bal≤0.002
Table 1  实验材料的化学成分 (质量分数/%)
Fig.1  组坯抽真空示意图
Fig.2  轧制工艺示意图
Fig.3  单搭接剪切试样尺寸示意图
Fig.4  组坯方式对多层金属复合板成材率的影响
(a)一步组坯轧制的中间坯;(b)两步组坯轧后的中间坯
Fig.5  多层复合板的金相组织 (a)单侧及中心部位;(b)2Cr13/1Cr17交替层
Fig.6  试样边部金相照片
Fig.7  界面处SEM像(a)及EDS能谱分析(b)
Fig.8  Gleeble热模拟试样界面组织 (a)不加Ni层;(b)添加Ni层
MaterialYield strength/
MPa
Tensile strength/
MPa
Shear strength/
MPa
Composite plate729.61105241
2Cr13 base steel440635-
9Cr18 base steel546755-
Table 2  复合基材和复合板力学性能
Fig.9  界面处显微硬度分布 (a)硬度实验压痕;(b)硬度分布
Fig.10  剪切断口形貌 (a)混合断口;(b)解理断口;(c)韧窝断口
AreaCSiCrMnFeTotal
16.130.3523.110.5369.88100.00
26.220.3820.200.3972.81100.00
Table 3  块状物质元素构成及比例的能谱分析(原子分数/%)
1 刘靖, 韩静涛, 杨忠慧, 等. 1Cr17/9Cr18MoV 多层复合钢板的组织与性能[J]. 材料科学与工程学报, 2012, 30 (3): 329- 332.
1 LIU J , HAN J T , YANG Z H , et al. Microstructure and performance of multi-layer 1Cr17/9Cr18MoV composite steel plate[J]. Journal of Materials Science and Engineering, 2012, 30 (3): 329- 332.
2 张兵, 王快社, 孙院军, 等. Cu/Mo/Cu 轧制复合界面的结合特性[J]. 中国有色金属学报, 2011, 21 (9): 2163- 2167.
2 ZHANG B , WANG K S , SUN Y J , et al. Bonding property of Cu/Mo/Cu cladding metal materials by hot rolling[J]. The Chinese Journal of Nonferrous Metals, 2011, 21 (9): 2163- 2167.
3 PALMER T A , ELMER J W , BRASHER D , et al. Development of an explosive welding process for producing high-strength welds between niobium and 6061-T651 aluminum[J]. Welding Journal, 2006, 85 (11): 252- 263.
4 YUE X , HE P , FENG J C , et al. Microstructure and interfacial reactions of vacuum brazing titanium alloy to stainless steel using an AgCuTi filler metal[J]. Materials Characterization, 2008, 59 (12): 1721- 1727.
doi: 10.1016/j.matchar.2008.03.014
5 ISLAM M F , RIDLEY N . Characterisation of diffusion bonds formed between Ti-6Al-4V and titanium aluminide super Alpha-2[J]. Materials Science and Technology, 1996, 12 (8): 623- 627.
doi: 10.1179/mst.1996.12.8.623
6 刘建彬, 韩静涛, 解国良, 等. 离心浇铸挤压复合钢管界面组织与性能[J]. 工程科学学报, 2008, (11): 1255- 1259.
6 LIU J B , HAN J T , XIE G L , et al. Interfacial microstructure and properties of clad steel pipes by centrifugal casting and extruding[J]. Chinese Journal of Engineering, 2008, (11): 1255- 1259.
7 董成文, 李艳芳, 任学平. TA1/Q235 钢复合板累积叠轧焊界面特性[J]. 工程科学学报, 2008, (3): 249- 253.
7 DONG C W , LI Y F , REN X P . Joint interface characteristics of TA1/Q235 clad plates manufactured by accumulative roll-bonding[J]. Chinese Journal of Engineering, 2008, (3): 249- 253.
8 KUNDU S , GHOSH M , LAIK A , et al. Diffusion bonding of commercially pure titanium to 304 stainless steel using copper interlayer[J]. Materials Science and Engineering:A, 2005, 407 (1-2): 154- 160.
doi: 10.1016/j.msea.2005.07.010
9 KATO H , ABE S , TOMIZAWA T . Interfacial structures and mechanical properties of steel-Ni and steel-Ti diffusion bonds[J]. Journal of Materials Science, 1997, 32 (19): 5225- 5232.
doi: 10.1023/A:1018694106588
10 KUNDU S , CHATTERJEE S . Interfacial microstructure and mechanical properties of diffusion-bonded titanium-stainless steel joints using a nickel interlayer[J]. Materials Science and Engineering:A, 2006, 425 (1-2): 107- 113.
doi: 10.1016/j.msea.2006.03.034
11 KUNDU S , CHATTERJEE S . Effects of temperature on interface microstructure and strength properties of titanium-niobium stainless steel diffusion bonded joints[J]. Materials Science and Technology, 2011, 27 (7): 1177- 1182.
doi: 10.1179/026708309X12595712305870
12 郭振华. 基于轧制生产数据的变形抗力模型构建方法[D]. 秦皇岛:燕山大学, 2011.
12 GUO Z H. Building method of the deformation resistance model based on rolling production data[D]. Qinhuangdao:Yanshan University, 2011.
13 WU K , CHANG H , MAAWAD E , et al. Microstructure and mechanical properties of the Mg/Al laminated composite fabricated by accumulative roll bonding (ARB)[J]. Materials Science and Engineering:A, 2010, 527 (13): 3073- 3081.
14 LEE J M , LEE B R , KANG S B . Control of layer continuity in metallic multilayers produced by deformation synthesis method[J]. Materials Science and Engineering:A, 2005, 406 (1): 95- 101.
15 李炎, 张振逵. 316L/16MnR 热轧复合板界面组织结构的研究[J]. 金属学报, 1995, 31 (12): 537- 542.
15 LI Y , ZHANG Z K . Study on the interfacial structures of hot-rolled 316L/16MnR clad plate[J]. Acta Metallurgica Sinica, 1995, 31 (12): 537- 542.
16 SABETGBADAM H , HANZAKI A Z , ARAEE A . Diffusion bonding of 410 stainless steel to copper using a nickel interlayer[J]. Materials Characterization, 2010, 61 (6): 626- 634.
doi: 10.1016/j.matchar.2010.03.006
17 YUAN X , TANG K , DENG Y , et al. Impulse pressuring diffusion bonding of a copper alloy to a stainless steel with/without a pure nickel interlayer[J]. Materials & Design, 2013, 52 (24): 359- 366.
18 陈全忠. 1100/7075 铝合金多层复合板材的强韧化研究[D]. 重庆:重庆大学, 2012.
18 CHEN Q Z. Study of strengthening and toughening on 1100/7075 Al alloy multilayered sheets[D]. Chongqing:Chongqing University, 2012.
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 赵云松, 杨昭, 陈瑞志, 张剑, 骆宇时, 刘丽荣. Ru对第四代镍基单晶高温合金DD22长期时效组织演化的影响[J]. 材料工程, 2022, 50(9): 127-136.
[4] 刘雄飞, 杜文博, 付军健, 王云峰, 李淑波, 朱训明, 王朝辉. Gd对Mg-xGd-1Er-1Zn-0.6Zr合金显微组织和腐蚀行为的影响[J]. 材料工程, 2022, 50(9): 159-168.
[5] 朱阳阳, 李晓延, 张伟栋, 张虎, 何溪. 全Cu3Sn焊点在高温时效下的组织及力学性能[J]. 材料工程, 2022, 50(9): 169-176.
[6] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[7] 薛燕鹏, 王效光, 赵金乾, 史振学, 刘世忠, 李嘉荣. 两种型壳温度对DD9单晶涡轮叶片凝固组织的影响[J]. 材料工程, 2022, 50(7): 80-87.
[8] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[9] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[10] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[11] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[12] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[13] 邓操, 李瑞迪, 袁铁锤, 牛朋达. Al含量对选区激光熔化AlxCoCrFeNi (x=0.3, 0.5, 0.7, 1.0)的显微组织及纳米压痕的影响[J]. 材料工程, 2022, 50(6): 27-35.
[14] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[15] 刘禄, 朱文琦, 林巧力. 高温下前驱膜形成机制的研究进展[J]. 材料工程, 2022, 50(5): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn