Synthesis of Al-5Ti-1B Refiner by Melt Reaction Method
He LI1, Li-hua CHAI1, Teng-fei MA2, Zi-yong CHEN1,*()
1 School of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China 2 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Al-5Ti-1B refiner was successfully prepared by melt reaction method. Through the thermodynamics calculation, the initial reaction temperature was determined. The influence of reaction temperature on microstructure and absorption rate of the alloy was investigated. The phase and microstructure of the alloy were observed by X-ray diffraction, scanning electron microscope and energy dispersive spectrometer. The Al-5Ti-1B refiner was extruded at high temperature to wire with the diameter of 9.5mm, and then the refinement experiment was carried out on pure aluminium. The results indicate that the refiner consists of TiB2, TiAl3 and α-Al, and the microstructure prepared at 850℃ is the optimum and the absorption rate of Ti and B matches the best. The TiAl3 and TiB2 phases distribute homogeneously in the matrix after extrusion. When adding 0.2%(mass fraction) of Al-5Ti-1B refiner, the grain size of pure aluminium reduces from 3.99mm to 0.45mm.
HUANG Y C , DU Z Y , XIAO Z B , et al. Effect of Al-Ti-C and Al-Ti-B on microstructure and mechanical performance of 7050 aluminum alloy[J]. Journal of Materials Engineering, 2015, 43 (12): 75- 80.
GAO S , SHU D , WANG L , et al. Research progress of Al-Ti-B grain refiner[J]. Light Alloy Fabrication Technology, 2007, 35 (12): 7- 10.
4
POURKIA N , EMAMY M , FARHANGI H , et al. The effect of Ti and Zr elements and cooling rate on the microstructure and tensile properties of a new developed super high-strength aluminum alloy[J]. Materials Science and Engineering:A, 2010, 527 (20): 5318- 5325.
doi: 10.1016/j.msea.2010.05.009
5
MURTY B S , KORI S A , CHAKRABORTY M . Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying[J]. International Materials Reviews, 2002, 47 (3): 3- 29.
6
HE Y D , ZHANG X M , CAO Z Q . Effect of minor Cr,Mn,Zr,Ti and B on grain refinement of as-cast Al-Zn-Mg-Cu alloys[J]. Rare Metal Materials and Engineering, 2010, 39 (7): 1135- 1140.
doi: 10.1016/S1875-5372(10)60108-7
7
STURZ L , DREVERMANN A , PICKMANN C , et al. Influence of grain refinement on the columnar-to-equiaxed transition in binary Al alloys[J]. Materials Science and Engineering:A, 2005, 413-414 (6): 379- 383.
8
WANG E , GAO T , NIE J , et al. Grain refinement limit and mechanical properties of 6063 alloy inoculated by Al-Ti-C (B) master alloys[J]. Journal of Alloys and Compounds, 2014, 594 (12): 7- 11.
9
MA T F , CHEN Z Y , NIE Z R , et al. Microstructure of Al-Ti-B-Er refiner and its grain refining performance[J]. Journal of Rare Earths, 2013, 31 (6): 622- 627.
doi: 10.1016/S1002-0721(12)60331-7
10
CAO F R , WEN J L , DING H , et al. Force analysis and experimental study of pure aluminum and Al-5%Ti-1%B alloy continuous expansion extrusion forming process[J]. Transactions of Nonferrous Metals Society of China, 2013, 23 (1): 201- 207.
doi: 10.1016/S1003-6326(13)62447-4
11
KANDALOVA E G , NIKITIN V I , JIE W Q , et al. Effect of Al powder content on SHS Al-Ti grain refiner[J]. Materials Letters, 2002, 54 (2): 131- 134.
12
叶大伦, 胡建华. 实用无机热力学数据手册[M]. 2版 北京: 冶金工业出版社, 2002.
12
YE D L , HU J H . Practical Inorganic Thermodynamics Manual[M]. 2nd Edition Beijing: Metallurgical Industry Press, 2002.
13
BIROL Y . Production of Al-Ti-B grain refining master alloys from Na2B4O7 and K2TiF6[J]. Journal of Alloys and Compounds, 2008, 458 (1-2): 271- 276.
doi: 10.1016/j.jallcom.2007.04.036
14
NIKITIN V I , JIE W Q , KANDALOVA E G , et al. Preparation of Al-Ti-B grain refiner by SHS technology[J]. Scripta Materialia, 2000, 42 (6): 561- 566.
doi: 10.1016/S1359-6462(99)00390-5
WANG Y X , LIN J P , HE Y H , et al. Research progress of Ti and Al powder reaction mechanism[J]. Materials Review, 2007, (1): 83- 85.
16
SUBRAHMANYAM J , VIJAVAKUMAR M . Self-propagation high-temperature synthesis[J]. Journal of Materials Science, 1992, 27 (23): 6249- 6273.
doi: 10.1007/BF00576271
17
YE Y C , HE L J , LI P J . Difference of grain refining effect of Sc and Ti additions in aluminum by empirical electron theory analysis[J]. Transactions of Nonferrous Metals Society of China, 2010, (3): 465- 470.
18
BIROL Y . Aluminothermic reduction of boron oxide for the manufacture of Al-B alloys[J]. Materials Chemistry and Physics, 2012, 136 (2-3): 963- 966.
doi: 10.1016/j.matchemphys.2012.08.030
19
LI P J , KANDALOVA E G , NIKITIN V I . Grain refining performance of Al-Ti master alloys with different microstructures[J]. Materials Letters, 2005, 59 (6): 723- 727.
doi: 10.1016/j.matlet.2004.06.073
20
LI P J , KANDALOVA E G , NIKITIN V I , et al. Effect of fluxes on structure formation of SHS Al-Ti-B grain refiner[J]. Materials Letters, 2003, 57 (22-23): 3694- 3698.
doi: 10.1016/S0167-577X(03)00163-0
21
BIROL Y . The effect of holding conditions in the conventional halide salt process on the performance of Al-Ti-B grain refiner alloys[J]. Journal of Alloys and Compounds, 2007, 427 (1-2): 142- 147.
doi: 10.1016/j.jallcom.2006.03.002
22
BIROL Y . Production of Al-Ti-B master alloys from Ti sponge and KBF4[J]. Journal of Alloys and Compounds, 2007, 440 (1-2): 108- 112.
doi: 10.1016/j.jallcom.2006.09.007
23
AURADI V , KORI S A . Influence of reaction temperature for the manufacturing of Al-3Ti and Al-3B master alloys[J]. Journal of Alloys and Compounds, 2008, 453 (1): 147- 156.
24
ZHANG M X , KELLY P M , EASTON M A , et al. Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model[J]. Acta Materialia, 2005, 53 (5): 1427- 1438.
doi: 10.1016/j.actamat.2004.11.037
25
MOHANTY P S , GRUZLESKI J E . Mechanism of grain refinement in aluminum[J]. Acta Materialia, 1995, 43 (5): 2001- 2012.