Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (2): 39-45    DOI: 10.11868/j.issn.1001-4381.2015.000588
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
高温熔体反应法制备Al-5Ti-1B细化剂
李贺1, 柴丽华1, 马腾飞2, 陈子勇1,*()
1 北京工业大学 材料科学与工程学院, 北京 100124
2 哈尔滨工业大学 材料科学与工程学院, 哈尔滨 150001
Synthesis of Al-5Ti-1B Refiner by Melt Reaction Method
He LI1, Li-hua CHAI1, Teng-fei MA2, Zi-yong CHEN1,*()
1 School of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
2 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
全文: PDF(3255 KB)   HTML ( 17 )  
输出: BibTeX | EndNote (RIS)      
摘要 

利用高温熔体反应法成功制备Al-5Ti-1B细化剂。通过热力学计算,确定Al-5Ti-1B细化剂的起始反应温度,研究熔体温度对细化剂组织形貌及吸收率的影响。利用X射线衍射,扫描电子显微镜和X射线能谱仪观察细化剂的相组成和形貌,同时对Al-5Ti-1B细化剂铸锭进行高温挤压,并对挤压出的9.5mm丝材进行微观组织分析和细化实验。结果表明:细化剂主要由TiB2,TiAl3,α-Al相组成;850℃制备的细化剂铸锭组织形貌最佳,且Ti和B吸收率达到最佳匹配。挤压后TiAl3相呈细小的块状和TiB2弥散分布在基体内。添加0.2%(质量分数)细化剂后,纯铝的晶粒尺寸由3.99mm细化到0.45mm。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李贺
柴丽华
马腾飞
陈子勇
关键词 Al-Ti-B熔体反应法热力学计算微观组织晶粒细化    
Abstract

Al-5Ti-1B refiner was successfully prepared by melt reaction method. Through the thermodynamics calculation, the initial reaction temperature was determined. The influence of reaction temperature on microstructure and absorption rate of the alloy was investigated. The phase and microstructure of the alloy were observed by X-ray diffraction, scanning electron microscope and energy dispersive spectrometer. The Al-5Ti-1B refiner was extruded at high temperature to wire with the diameter of 9.5mm, and then the refinement experiment was carried out on pure aluminium. The results indicate that the refiner consists of TiB2, TiAl3 and α-Al, and the microstructure prepared at 850℃ is the optimum and the absorption rate of Ti and B matches the best. The TiAl3 and TiB2 phases distribute homogeneously in the matrix after extrusion. When adding 0.2%(mass fraction) of Al-5Ti-1B refiner, the grain size of pure aluminium reduces from 3.99mm to 0.45mm.

Key wordsAl-Ti-B    melt reaction method    thermodynamics calculation    microstructure    grain refinement
收稿日期: 2015-05-12      出版日期: 2017-02-23
中图分类号:  TG146.2+1  
通讯作者: 陈子勇     E-mail: czy@bjut.edu.cn
作者简介: 陈子勇(1966-),男,教授,博士,从事专业:先进轻合金,联系地址:北京市朝阳区平乐园100号北京工业大学材料学院309北(100124),czy@bjut.edu.cn
引用本文:   
李贺, 柴丽华, 马腾飞, 陈子勇. 高温熔体反应法制备Al-5Ti-1B细化剂[J]. 材料工程, 2017, 45(2): 39-45.
He LI, Li-hua CHAI, Teng-fei MA, Zi-yong CHEN. Synthesis of Al-5Ti-1B Refiner by Melt Reaction Method. Journal of Materials Engineering, 2017, 45(2): 39-45.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000588      或      http://jme.biam.ac.cn/CN/Y2017/V45/I2/39
Fig.1  熔体反应法制备细化剂过程
Fig.2  熔体反应法制备的Al-5Ti-1B细化剂XRD分析
Fig.3  不同反应温度时制备的Al-5Ti-1B 细化剂SEM图 (a)800℃;(b)850℃;(c)900℃
Fig.4  Al-5Ti-1B细化剂的EDS分析 (a)图 3(a)中A点;(b)图 3(b)中B点
Fig.5  Ti,B吸收率随温度的变化
Fig.6  Al-5Ti-1B细化剂微观组织 (a)熔体反应法;(b)常规方法
Fig.7  常规方法(1)和熔体反应法(2)制备的细化剂细化效果
(a)添加前;(b)添加后,保温2min;(c)添加后,保温5min
Preparation
method
Before
addition/mm
After addition
for 2min/mm
After addition
for 5min/mm
Conventional method3.990.49 0.47
Melt reaction method3.990.510.45
Table 1  纯铝晶粒平均尺寸
1 BIROL Y . Al-Ti-B grain refiners via powder metallurgy processing of Al/K2TiF6/KBF4 powder blends[J]. Journal of Alloys and Compounds, 2009, 480 (2): 311- 314.
doi: 10.1016/j.jallcom.2009.01.091
2 黄元春, 杜志勇, 肖政兵, 等. Al-Ti-C和Al-Ti-B对7050铝合金微观组织与力学性能的影响[J]. 材料工程, 2015, 43 (12): 75- 80.
2 HUANG Y C , DU Z Y , XIAO Z B , et al. Effect of Al-Ti-C and Al-Ti-B on microstructure and mechanical performance of 7050 aluminum alloy[J]. Journal of Materials Engineering, 2015, 43 (12): 75- 80.
3 高耸, 疏达, 王镭, 等. Al-Ti-B 晶粒细化剂的研究进展[J]. 轻合金加工技术, 2007, 35 (12): 7- 10.
3 GAO S , SHU D , WANG L , et al. Research progress of Al-Ti-B grain refiner[J]. Light Alloy Fabrication Technology, 2007, 35 (12): 7- 10.
4 POURKIA N , EMAMY M , FARHANGI H , et al. The effect of Ti and Zr elements and cooling rate on the microstructure and tensile properties of a new developed super high-strength aluminum alloy[J]. Materials Science and Engineering:A, 2010, 527 (20): 5318- 5325.
doi: 10.1016/j.msea.2010.05.009
5 MURTY B S , KORI S A , CHAKRABORTY M . Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying[J]. International Materials Reviews, 2002, 47 (3): 3- 29.
6 HE Y D , ZHANG X M , CAO Z Q . Effect of minor Cr,Mn,Zr,Ti and B on grain refinement of as-cast Al-Zn-Mg-Cu alloys[J]. Rare Metal Materials and Engineering, 2010, 39 (7): 1135- 1140.
doi: 10.1016/S1875-5372(10)60108-7
7 STURZ L , DREVERMANN A , PICKMANN C , et al. Influence of grain refinement on the columnar-to-equiaxed transition in binary Al alloys[J]. Materials Science and Engineering:A, 2005, 413-414 (6): 379- 383.
8 WANG E , GAO T , NIE J , et al. Grain refinement limit and mechanical properties of 6063 alloy inoculated by Al-Ti-C (B) master alloys[J]. Journal of Alloys and Compounds, 2014, 594 (12): 7- 11.
9 MA T F , CHEN Z Y , NIE Z R , et al. Microstructure of Al-Ti-B-Er refiner and its grain refining performance[J]. Journal of Rare Earths, 2013, 31 (6): 622- 627.
doi: 10.1016/S1002-0721(12)60331-7
10 CAO F R , WEN J L , DING H , et al. Force analysis and experimental study of pure aluminum and Al-5%Ti-1%B alloy continuous expansion extrusion forming process[J]. Transactions of Nonferrous Metals Society of China, 2013, 23 (1): 201- 207.
doi: 10.1016/S1003-6326(13)62447-4
11 KANDALOVA E G , NIKITIN V I , JIE W Q , et al. Effect of Al powder content on SHS Al-Ti grain refiner[J]. Materials Letters, 2002, 54 (2): 131- 134.
12 叶大伦, 胡建华. 实用无机热力学数据手册[M]. 2版 北京: 冶金工业出版社, 2002.
12 YE D L , HU J H . Practical Inorganic Thermodynamics Manual[M]. 2nd Edition Beijing: Metallurgical Industry Press, 2002.
13 BIROL Y . Production of Al-Ti-B grain refining master alloys from Na2B4O7 and K2TiF6[J]. Journal of Alloys and Compounds, 2008, 458 (1-2): 271- 276.
doi: 10.1016/j.jallcom.2007.04.036
14 NIKITIN V I , JIE W Q , KANDALOVA E G , et al. Preparation of Al-Ti-B grain refiner by SHS technology[J]. Scripta Materialia, 2000, 42 (6): 561- 566.
doi: 10.1016/S1359-6462(99)00390-5
15 王衍行, 林均品, 贺跃辉, 等. 元素粉末Ti与Al反应机理的研究进展[J]. 材料导报, 2007, (1): 83- 85.
15 WANG Y X , LIN J P , HE Y H , et al. Research progress of Ti and Al powder reaction mechanism[J]. Materials Review, 2007, (1): 83- 85.
16 SUBRAHMANYAM J , VIJAVAKUMAR M . Self-propagation high-temperature synthesis[J]. Journal of Materials Science, 1992, 27 (23): 6249- 6273.
doi: 10.1007/BF00576271
17 YE Y C , HE L J , LI P J . Difference of grain refining effect of Sc and Ti additions in aluminum by empirical electron theory analysis[J]. Transactions of Nonferrous Metals Society of China, 2010, (3): 465- 470.
18 BIROL Y . Aluminothermic reduction of boron oxide for the manufacture of Al-B alloys[J]. Materials Chemistry and Physics, 2012, 136 (2-3): 963- 966.
doi: 10.1016/j.matchemphys.2012.08.030
19 LI P J , KANDALOVA E G , NIKITIN V I . Grain refining performance of Al-Ti master alloys with different microstructures[J]. Materials Letters, 2005, 59 (6): 723- 727.
doi: 10.1016/j.matlet.2004.06.073
20 LI P J , KANDALOVA E G , NIKITIN V I , et al. Effect of fluxes on structure formation of SHS Al-Ti-B grain refiner[J]. Materials Letters, 2003, 57 (22-23): 3694- 3698.
doi: 10.1016/S0167-577X(03)00163-0
21 BIROL Y . The effect of holding conditions in the conventional halide salt process on the performance of Al-Ti-B grain refiner alloys[J]. Journal of Alloys and Compounds, 2007, 427 (1-2): 142- 147.
doi: 10.1016/j.jallcom.2006.03.002
22 BIROL Y . Production of Al-Ti-B master alloys from Ti sponge and KBF4[J]. Journal of Alloys and Compounds, 2007, 440 (1-2): 108- 112.
doi: 10.1016/j.jallcom.2006.09.007
23 AURADI V , KORI S A . Influence of reaction temperature for the manufacturing of Al-3Ti and Al-3B master alloys[J]. Journal of Alloys and Compounds, 2008, 453 (1): 147- 156.
24 ZHANG M X , KELLY P M , EASTON M A , et al. Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model[J]. Acta Materialia, 2005, 53 (5): 1427- 1438.
doi: 10.1016/j.actamat.2004.11.037
25 MOHANTY P S , GRUZLESKI J E . Mechanism of grain refinement in aluminum[J]. Acta Materialia, 1995, 43 (5): 2001- 2012.
[1] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[2] 朱阳阳, 李晓延, 张伟栋, 张虎, 何溪. 全Cu3Sn焊点在高温时效下的组织及力学性能[J]. 材料工程, 2022, 50(9): 169-176.
[3] 刘小辉, 刘允中. 激光选区熔化成形高强铝合金晶粒细化抑制裂纹研究现状[J]. 材料工程, 2022, 50(8): 1-16.
[4] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[5] 张昌青, 王树文, 罗德春, 师文辰, 刘晓, 崔国胜, 陈波阳, 辛舟, 芮执元. 热电耦合对铝/钢连续驱动摩擦焊接头组织的影响机理[J]. 材料工程, 2022, 50(5): 35-42.
[6] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[7] 安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
[8] 孙琦迪, 杨蔚涛, 郝庆国, 关肖虎, 章斌, 杨旗. 低周疲劳变形过程中Fe-33Mn-4Si合金钢的微观组织演变[J]. 材料工程, 2022, 50(4): 162-171.
[9] 计植耀, 马跃, 王清, 董闯. 高性能软磁合金的研究进展[J]. 材料工程, 2022, 50(3): 69-80.
[10] 余晖, 任军超, 杨鑫, 郭舒龙, 余炜, 冯建航, 殷福星, 辛光善. Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究[J]. 材料工程, 2022, 50(3): 157-165.
[11] 陈维平, 陈焕达, 褚晨亮, 付志强. 粉末冶金(FeNiMnAlx)50Cu50中熵合金的微观组织与力学性能[J]. 材料工程, 2022, 50(10): 55-62.
[12] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[13] 李安庆, 张立华, 蒋日鹏, 李晓谦, 张昀. 冷却速度及超声振动协同作用对7085铝合金凝固组织及力学性能的影响[J]. 材料工程, 2021, 49(8): 63-71.
[14] 谷籽旺, 郭文敏, 张弘鳞, 李文娟. 基于核壳结构粉体设计的CoNiCrAlY-Al2O3复合涂层组织结构及其抗氧化性能[J]. 材料工程, 2021, 49(7): 112-123.
[15] 于娟, 陆政, 鲁原, 熊艳才, 李国爱, 冯朝辉, 郝时嘉. 中间形变热处理对2A97铝锂合金组织和性能的影响[J]. 材料工程, 2021, 49(5): 130-136.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn