Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (6): 1-7    DOI: 10.11868/j.issn.1001-4381.2015.000635
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
AZ31镁合金管材挤压成型数值模拟与实验研究
孙颖迪, 陈秋荣
中国科学院 上海微系统与信息技术研究所 轻合金技术 工程中心, 上海 200050
Numerical Simulation and Experiment Study on Extrusion of AZ31 Magnesium Alloy Tube
SUN Ying-di, CHEN Qiu-rong
Light Alloy Engineering Center, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
全文: PDF(9053 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 运用基于AZ31镁合金本构方程与ALE算法的HyperXtrude软件对典型AZ31薄壁管材的挤压过程进行数值模拟,并通过调整焊合室高度、焊合室大圆角及焊合室坡度3个结构参数,分析不同条件下应力分布与速率分布的变化情况。结果表明:焊合室内近工作带处压力随焊合室高度增加不断减小,分流孔与焊合室压力的最大值与平均值均随焊合室大圆角增大发生降低,分流孔与焊合室压力随焊合室入口坡度增大不断增大,并在焊合室高度为16mm、大圆角为18mm以及入口坡度为15°时金属流速均方差达到最小值。优化模具结构缓解了应力集中与流速不均等问题,在实验生产中得到合格产品,型材组织均匀细化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙颖迪
陈秋荣
关键词 AZ31镁合金挤压模具有限元分析数值模拟    
Abstract:The extrusion process of typical AZ31 magnesium alloy tube was simulated by using the constitutive model of AZ31 alloys and ALE-based HyperXtrude software. The changes of stress distribution and velocity distribution were analyzed under different conditions, through the adjustment of three structural parameters, including the height, big round corner and gradient of weld chamber. The results show that the pressure near the work zone in the weld chamber decrease with the increase of the height of weld chamber, the maximum value and average value of the pressure in the weld chamber are decreasing with the increase of big round corner of weld chamber, and the pressure in the port holes and weld chamber increases with the increase of the gradient of weld chamber. The minimum variance of metal flow rate is achieved in the height of weld chamber with 16mm, big round corner with 18mm and gradient of weld chamber with 15°. The optimized structure alleviates the issues of stress concentration and non-homogeneous flowing velocity. The final die is proved to be capable of producing the qualified products and the microstructure after extrusion is uniform and fine.
Key wordsAZ31 magnesium alloy    extrusion die    finite element analysis    numerical simulation
收稿日期: 2015-05-19      出版日期: 2017-06-20
中图分类号:  TG379  
通讯作者: 孙颖迪(1983-),女,助理研究员,博士,轻质镁合金加工与仿真研究,联系地址:上海市长宁路865号(200050),E-mail:yingdisun@mail.sim.ac.cn     E-mail: yingdisun@mail.sim.ac.cn
引用本文:   
孙颖迪, 陈秋荣. AZ31镁合金管材挤压成型数值模拟与实验研究[J]. 材料工程, 2017, 45(6): 1-7.
SUN Ying-di, CHEN Qiu-rong. Numerical Simulation and Experiment Study on Extrusion of AZ31 Magnesium Alloy Tube. Journal of Materials Engineering, 2017, 45(6): 1-7.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000635      或      http://jme.biam.ac.cn/CN/Y2017/V45/I6/1
[1] 陈振华. 变形镁合金[M]. 北京:化学工业出版社, 2005. CHEN Z H. Wrought magnesium alloy[M]. Beijing:Chemical Industry Press, 2005.
[2] AKYUZ B. Influence of Al content on machinability of AZ series Mg alloys[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(8):2243-2249.
[3] 刘正, 董阳, 毛萍莉, 等. 轧制AZ31镁合金板材(4mm)动态压缩性能与失效行为[J]. 材料工程, 2015, 43(2):61-66. LIU Z, DONG Y, MAO P L, et al. Dynamic compressive properties and failure behaviour of rolled AZ31 magnesium alloy sheet (4mm)[J]. Journal of Materials Engineering, 2015, 43(2):61-66.
[4] 刘守法, 周兆锋, 李春风. 热输入对AZ31镁合金FSP试样力学性能的影响[J]. 航空材料学报, 2015, 35(1):39-44. LIU S F, ZHOU Z F, LI C F. Effects of heat input on mechanical properties of AZ31 Mg alloy fabricated by FSP[J]. Journal of Aeronautical Materials, 2015, 35(1):39-44.
[5] HERRERA-SOLAZ V, LIORCA J, DOGAN E, et al. An inverse optimization strategy to determine single crystal mechanical behavior from polycrystal tests:application to AZ31 Mg alloy[J]. International Journal of Plasticity, 2014, 57:1-15.
[6] CHEN H, ZHAO G Q, ZHANG C S, et al. Numerical simulation of extrusion process and die structure optimization for a complex aluminum multicavity wallboard of high-speed train[J]. Materials and Manufacturing Processes, 2011, 26(12):1530-1538.
[7] ZHANG C S, ZHAO G Q, CHEN Z R, et al. Effect of extrusion stem speed on extrusion process for a hollow aluminum profile[J]. Materials Science and Engineering B, 2012, 177(19):1691-1697.
[8] KUMAR S, VIJAY P. Die design and experiments for shaped extrusion under cold and hot condition[J]. Journal of Materials Processing Technology, 2007, 190(1-3):375-381.
[9] GUAN Y J, ZHANG C S, ZHAO G Q, et al. Design of a multihole porthole die for aluminum tube extrusion[J]. Materials and Manufacturing Processes, 2012, 27(2):147-153.
[10] ZHANG C S, ZHAO G Q, CHEN H, et al. Numerical simulation and metal flow analysis of hot extrusion process for a complex hollow aluminum profile[J]. International Journal of Advanced Manufacturing Technology, 2012, 60(1-4):101-110.
[11] SUN Y D, CHEN Q R, SUN W J. Numerical simulation of extrusion process and die structure optimization for a complex magnesium doorframe[J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(1):495-506.
[12] 孙颖迪, 李光振, 陈秋荣. AZ31镁合金方管挤压成型的数值模拟[J]. 机械工程材料, 2015, 39(10):84-89. SUN Y D, LI G Z, CHEN Q R. Numerical simulation of square tube extrusion for AZ31 magnesium alloys[J]. Materials for Mechanical Engineering, 2015, 39(10):84-89.
[13] 李光振, 孙颖迪, 陈秋荣, 等. 基于HyperXtrude的镁型材挤压数值模拟与模具优化研究[J]. 热加工工艺, 2014, 43(13):118-123. LI G Z, SUN Y D, CHEN Q R, et al. Numerical simulation and die optimization of magnesium profile extrusion based on HyperXtrude[J]. Hot Working Technology, 2014, 43(13):118-123.
[14] 孙文君, 孙颖迪, 沈钰, 等. AZ31镁合金薄壁空心型材挤压过程数值模拟与模具优化[J]. 轻合金加工技术, 2014, 42(10):40-45. SUN W J, SUN Y D, SHEN Y, et al. Numerical simulation of extrusion process and optimization of the die structure for a hollow AZ31 magnesium alloy profile with the thin wall[J]. Light Alloy Fabrication Technology, 2014, 42(10):40-45.
[15] 刘静安. 轻合金挤压工模具手册[M]. 北京:冶金工业出版社, 2012. LIU J A. Handbook of light alloy extrusion die[M]. Beijing:Metallurgical Industry Press, 2012.
[1] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[2] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[3] 赵魏, 王雅娜, 王翔. 分层界面角度对CFRP层板Ⅱ型分层的影响[J]. 材料工程, 2019, 47(9): 152-159.
[4] 张菁丽, 吴金平, 罗媛媛, 赵彬, 郭荻子, 赵圣泽, 杨帆. 基于Normalized Cockcroft&Latham韧性损伤准则Ti600合金临界损伤值的测定[J]. 材料工程, 2019, 47(7): 121-125.
[5] 鹿旭飞, 林鑫, 马良, 曹阳, 黄卫东. 扫描路径对激光立体成形TC4构件热-力场的影响[J]. 材料工程, 2019, 47(12): 55-62.
[6] 郜庆伟, 赵健, 舒凤远, 吕成成, 齐宝亮, 于治水. 铝合金增材制造技术研究进展[J]. 材料工程, 2019, 47(11): 32-42.
[7] 刘军, 张金玲, 渠治波, 于彦冲, 许并社, 王社斌. 稀土Gd对AZ31镁合金耐蚀性能的影响[J]. 材料工程, 2018, 46(6): 73-79.
[8] 朱怀沈, 聂义宏, 赵帅, 王宝忠. 镍基617合金动态再结晶微观组织演变与预测[J]. 材料工程, 2018, 46(6): 80-87.
[9] 刘多, 刘景和, 周英豪, 宋晓国, 牛红伟, 冯吉才. 紫铜/Al2O3陶瓷/不锈钢复合结构钎焊接头残余应力研究[J]. 材料工程, 2018, 46(3): 61-66.
[10] 尹建成, 杨环, 刘英莉, 陈业高, 张八淇, 钟毅. 约束喷射沉积过程中雾化气流场的模拟研究[J]. 材料工程, 2018, 46(11): 102-109.
[11] 梁贤烨, 弭光宝, 李培杰, 曹京霞, 黄旭. 钛合金叶片燃烧后冷却过程的三维热流耦合数值模拟[J]. 材料工程, 2018, 46(10): 37-46.
[12] 卢玉章, 熊英, 彭建强, 申健, 郑伟, 张功, 谢光. 重型燃机定向结晶空心叶片凝固过程的实验与模拟[J]. 材料工程, 2018, 46(1): 8-15.
[13] 朱庆丰, 张扬, 朱成, 班春燕, 崔建忠. 高纯铝多向锻造大塑性变形过程的数值模拟及实验研究[J]. 材料工程, 2017, 45(4): 15-20.
[14] 赵福泽, 朱绍珍, 冯小辉, 杨院生. 高能超声分散纳米晶须的数值和物理模拟[J]. 材料工程, 2016, 44(7): 13-18.
[15] 张敏, 徐蔼彦, 汪强, 李露露. Al-4%Cu凝固过程枝晶生长的数值模拟[J]. 材料工程, 2016, 44(6): 9-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn