Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (5): 94-99    DOI: 10.11868/j.issn.1001-4381.2015.000646
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
无碳化物贝氏体钢渗碳后的深冷处理
孙世清1,2
1. 河北科技大学 材料科学与工程学院, 石家庄 050000;
2. 河北省材料近净成形技术重点实验室, 石家庄 050000
Cryogenic Treatment of Carbide-free Bainite Steel After Carburizing
SUN Shi-qing1,2
1. School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China;
2. Hebei Key Laboratory of Material Near-Net Forming Technology, Shijiazhuang 050000, China
全文: PDF(1921 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用热磁分析、显微硬度分析与直读光谱分析等相结合的方法,对无碳化物贝氏体钢进行渗碳后的深冷处理工艺优化。结果表明:无碳化物贝氏体钢在1193K渗碳空冷后,测试有效硬化层样品的热磁曲线,可以得到有效硬化层的深冷处理温度宜低于134K。经123K深冷处理和463K回火,有效硬化层残留奥氏体含量约为12.2%(质量分数)。通过深冷处理使渗碳钢近表面层得到显著硬化,再经低温回火使近表面层硬度均达到810HV1.0左右,渗碳钢的硬度梯度分布趋于合理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙世清
关键词 无碳化物贝氏体钢渗碳深冷处理热磁分析残留奥氏体硬化    
Abstract:The cryogenic treatment (CT) process of carbide-free bainite steel after carburizing was optimized by the method combining thermal magnetic analysis, microhardness analysis and direct reading spectrometric analysis. The results show that cryogenic treatment temperature of the hardened layer should be lower than 134K by measuring thermal magnetic curve of the sample after carburizing at 1193K and air cooling (AC). After cryogenic treatment at 123K and tempering (T) at 463K, retained austenite content of the hardened layer is about 12.2% (mass fraction). The near surface layer of carburized steel is hardened dramatically through the cryogenic treatment, and the hardness of near surface layer reaches about 810HV1.0 after low temperature tempering. The distribution of hardness gradient of carburized steel tends to be reasonable.
Key wordscarbide-free bainite steel    carburizing    cryogenic treatment    thermal magnetic analysis    retained austenite    hardening
收稿日期: 2015-05-21      出版日期: 2017-05-17
中图分类号:  TG115.27+1  
通讯作者: 孙世清(1965-),男,博士,教授,从事材料磁性研究,联系地址:河北省石家庄市裕翔街26号河北科技大学材料科学与工程学院(050000),E-mail:hbkdssq@126.com     E-mail: hbkdssq@126.com
引用本文:   
孙世清. 无碳化物贝氏体钢渗碳后的深冷处理[J]. 材料工程, 2017, 45(5): 94-99.
SUN Shi-qing. Cryogenic Treatment of Carbide-free Bainite Steel After Carburizing. Journal of Materials Engineering, 2017, 45(5): 94-99.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000646      或      http://jme.biam.ac.cn/CN/Y2017/V45/I5/94
[1] 王丙兴,董福志,王昭东,等.超快冷条件下Mn-Nb-B系低碳贝氏体高强钢组织与性能研究[J].材料工程,2016,44(7):26-31. WANG B X,DONG F Z,WANG Z D,et al.Microstructure and property of Mn-Nb-B low carbon bainite high strength steel under ultra-fast cooling[J].Journal of Materials Engineering,2016,44(7):26-31.
[2] 王六定,朱明,陈景东,等.低碳超高强度贝氏体钢的组织细化[J].材料热处理学报,2007,28(5):42-45. WANG L D,ZHU M,CHEN J D,et al.Refinement of structure for low-carbon ultra-high strength bainite steels[J].Transactions of Materials and Heat Treatment,2007,28(5):42-45.
[3] ROY S,SUNDARARAJAN S.The effect of heat treatment routes on the retained austenite and tribomechanical properties of carburized AISI 8620 steel[J].Surface & Coatings Technology,2016,308(1):236-243.
[4] 江志华,李春志,张建国,等.13Cr4Mo4Ni4VA钢复合硬化层的表征研究[J].航空材料学报,2015,35(5):7-12. JIANG Z H,LI C Z,ZHANG J G,et al.Characterization study of duplex-hardened 13Cr4Mo4Ni4VA steel[J].Journal of Aeronautical Materials,2015,35(5):7-12.
[5] WALVEKAR A A,SADEGHI F.Rolling contact fatigue of case carburized steels[J].International Journal of Fatigue,2017,95:264-281.
[6] SHEN Y,MOGHADAM S M,SADEGHI F,et al.Effect of retained austenite-compressive residual stresses on rolling contact fatigue life of carburized AISI 8620 steel[J].International Journal of Fatigue,2015,75:135-144.
[7] 程巨强,康沫狂.硅对准贝氏体渗碳钢组织与性能的影响[J].材料热处理学报,2003,24(3):8-11. CHENG J Q,KANG M K.Effect of silicon on the microstructure and properties of meta-bainitic carburizing steel[J].Transactions of Materials and Heat Treatment,2003,24(3):8-11.
[8] 贺自强,康沫狂,杨延清,等.准贝氏体钢渗碳层耐磨性及磨损机制研究[J].材料热处理学报,2004,25(4):72-76. HE Z Q,KANG M K,YANG Y Q,et al.Wear resistance and wear mechanism of carburized layer of meta-bainitic steel[J].Transactions of Materials and Heat Treatment,2004,25(4):72-76.
[9] MEHTEDI M E,RICCI P,DRUDI L,et al.Analysis of the effect of deep cryogenic treatment on the hardness and microstructure of X30 CrMoN 151 steel[J].Materials & Design,2012,33:136-144.
[10] NIAKI K S,VAHDAT S E.Fatigue scatter of 1.2542 tool steel after deep cryogenic treatment[J].Materials Today:Proceedings,2015,2(4-5):1210-1215.
[11] PODGORNIK B,PAULIN I, ZAJEC B,et al.Deep cryogenic treatment of tool steels[J].Journal of Materials Processing Technology,2016,229:398-406.
[12] LI H Z,TONG W P,CUI J J,et al.The influence of deep cryogenic treatment on the properties of high-vanadium alloy steel[J].Materials Science and Engineering:A,2016,662:356-362.
[13] PREZ M,BELZUNCE F J.The effect of deep cryogenic treatments on the mechanical properties of an AISI H13 steel[J].Materials Science and Engineering:A,2015,624:32-40.
[14] ZHENG S Q,JIANG W,BAI X,et al.Effect of deep cryogenic treatment on formation of reversed austenite in super martensitic stainless steel[J].Journal of Iron and Steel Research,International,2015,22(5):451-456.
[15] JASWIN M A,LAL D M.Effect of cryogenic treatment on the tensile behaviour of En 52 and 21-4N valve steels at room and elevated temperatures[J].Materials & Design,2011,32(4):2429-2437.
[16] LUZGINOVA N,ZHAO L,SIETSMA J.Evolution and thermal stability of retained austenite in SAE 52100 bainite steel[J].Materials Science and Engineering:A,2007,448(1-2):104-110.
[17] CHARLES K.Introduction to Solid State Physics[M].6th ed.New York:John Wiley & Sons Inc,1986.429.
[1] 赵玲, 刘光磊, 张思源, 李茂军, 刘简宁, 李明辉. 固溶时效深冷复合处理对ZCuAl10Fe3Mn2合金微观组织和热疲劳性能的影响[J]. 材料工程, 2019, 47(12): 63-70.
[2] 陈连生, 胡宝佳, 宋进英, 张健杨, 郑小平, 魏英立, 田亚强. 初始组织对低碳钢IQ&P工艺残留奥氏体及力学性能的影响[J]. 材料工程, 2017, 45(2): 96-101.
[3] 柳建, 朱胜, 蔡志海, 张平, 刘军, 秦航, 仝永刚. FV520B沉淀硬化不锈钢的MAG堆焊再制造力学特性[J]. 材料工程, 2017, 45(10): 23-31.
[4] 王建亭, 周荣生, 王明杰, 朱定一. 形变温度对Fe-20Mn-3Cu-1.3C TWIP钢拉伸变形行为的影响[J]. 材料工程, 2016, 44(1): 11-18.
[5] 何正林, 高文理, 陆政, 冯朝辉. 热处理对7A85铝合金组织和性能的影响[J]. 材料工程, 2015, 43(8): 13-18.
[6] 张胜男, 程兴旺. AerMet100超高强度钢的动态力学性能研究[J]. 材料工程, 2015, 43(12): 24-30.
[7] 有移亮, 董键, 张峥, 钟群鹏. 空气压缩机叶片断裂失效分析[J]. 材料工程, 2013, (8): 50-54.
[8] 定巍, 龚志华, 唐荻, 江海涛, 王宝峰. 低硅含铝TRIP钢残余奥氏体变形过程中稳定性研究[J]. 材料工程, 2013, 0(12): 68-73.
[9] 李波, 康永林, 朱国明, 高永坚. 基板强度对汽车用合金化热镀锌板摩擦因数的影响[J]. 材料工程, 2012, 0(8): 14-18.
[10] 陈继平, 钱健清, 李胜祗, 康永林. Ti+Nb和Ti+V超低碳烘烤硬化钢的组织和性能研究[J]. 材料工程, 2012, 0(4): 32-35.
[11] 沈利民, 巩建鸣, 姜勇. 多因素耦合下Cr35Ni45Nb钢乙烯裂解炉管损伤数值模拟[J]. 材料工程, 2012, 0(12): 77-82,88.
[12] 陈贵清, 傅高升, 颜文煅, 程超增, 邹泽昌. 3003铝合金动态再结晶实验研究[J]. 材料工程, 2011, 0(8): 77-81.
[13] 定巍, 江海涛, 唐荻, 田志强, 殷安民. 低硅TRIP钢的力学性能及残余奥氏体稳定性研究[J]. 材料工程, 2010, 0(4): 72-75,80.
[14] 杜艳迎, 史玉升, 魏青松, 刘锦辉. 不锈钢粉末冷等静压数值模拟与实验验证[J]. 材料工程, 2010, 0(3): 89-92.
[15] 邝霜, 康永林, 于浩, 刘仁东. C-Si-Mn冷轧双相钢的应变硬化特性[J]. 材料工程, 2009, 0(2): 11-14,18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn