Crack Growth Behaviour of P92 Steel Under Creep-fatigue Interaction Conditions
Hong-yang JING1,2, Meng-ru TANG1,2, Lei ZHAO1,2, Lian-yong XU1,2,*()
1 School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China 2 Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300072, China
Creep-fatigue interaction tests of P92 steel at 630℃ under stress-controlled were carried out, and the crack propagation behaviour of P92 steel was studied. The fracture mechanism of crack growth under creep-fatigue interaction and the transition points in a-N curves were analyzed based on the fracture morphology. The results show that the fracture of P92 steel under creep-fatigue interaction is creep ductile fracture and the (Ct)avg parameter is employed to demonstrate the crack growth behaviour; in addition, the fracture morphology shows that the crack growth for P92 steel under creep-fatigue interaction is mainly caused by the nucleation and growth of the creep voids and micro-cracks. Furthermore, the transition point of a-lg(Ni/Nf) curve corresponds to the turning point of initial crack growth changed into steady crack growth while the transition point of (da/dN)-N curve exhibits the turning point of steady creep crack growth changed into the accelerated crack growth.
ZHAO Y T , DONG J H , ZHANG S H , et al. High-temperature tensile fracture morphology of P92 steel[J]. Journal of Materials Engineering, 2015, 43 (4): 85- 91.
doi: 10.11868/j.issn.1001-4381.2015.04.015
XUAN F Z , TU S D , WANG Z D . Time dependent fatigue fracture theory and residual life assessment techniques for defective structures[J]. Advances in Mechanics, 2005, 35 (3): 391- 400.
doi: 10.6052/1000-0992-2005-3-J2004-075
TAN X M , ZHANG D F , CHEN Y L , et al. Probabilistic method to predict fatigue life based on crack initiating micro-mechanism of aluminum alloy[J]. Journal of Aeronautical Materials, 2014, 34 (2): 84- 89.
4
LIU H , BAO R , ZHANG J , et al. A creep-fatigue crack growth model containing temperature and interactive effects[J]. International Journal of Fatigue, 2014, 59 (3): 34- 42.
RAO S X , PENG H , ZHOU Y , et al. Research on the interactions between creep and fatigue of TP347H under high temperature[J]. Chinese Journal of Mechanical Engineering, 2015, 51 (2): 37- 42.
6
YANG H , BAO R , ZHANG J , et al. Crack growth behavior of a nickel-based powder metallurgy superalloy under elevated temperature[J]. International Journal of Fatigue, 2011, 33 (4): 632- 641.
doi: 10.1016/j.ijfatigue.2010.11.003
CHEN X D , FAN Z C , JIANG H F , et al. Creep-fatigue life prediction methods of pressure vessel typical steels under complicated loading conditions[J]. Journal of Mechanical Engineering, 2009, 45 (2): 81- 87.
8
ZHANG G , ZHAO Y , XUE F , et al. Study of life prediction and damage mechanism for modified 9Cr-1Mo steel under creep-fatigue interaction[J]. Journal of Pressure Vessel Technology, 2013, 135 (4): 14- 16.
9
KIM B , KIM H , LIM B . Creep-fatigue damage and life prediction in P92 alloy by focused ultrasound measurements[J]. Metals and Materials International, 2008, 14 (4): 391- 395.
doi: 10.3365/met.mat.2008.08.391
LIU H J . Experimental study on creep-fatigue interaction behavior of steel P91 for power plan boilers[J]. Journal of Power Engineering, 2007, 27 (6): 990- 995.
XUE H J , LV G Z . Estimation of failure probability for creep-fatigue failure based on the life-time method[J]. Journal of the Mechanical Strength, 2002, 24 (1): 116- 119.
12
FOURNIER B , SAUZAY M , CAĒS C , et al. Creep-fatigue-oxidation interactions in a 9Cr-1Mo martensitic steel. Part I: Effect of tensile holding period on fatigue life time[J]. International Journal of Fatigue, 2008, 30 (4): 649- 662.
doi: 10.1016/j.ijfatigue.2007.05.007
13
NARASIMHACHARY S B , SAXENA A . Crack growth behavior of 9Cr-1Mo (P91) steel under creep-fatigue conditions[J]. International Journal of Fatigue, 2013, 56 (11): 106- 113.
14
赵雷. 拘束效应对高温下含缺陷P92管道寿命的影响研究[D]. 天津: 天津大学, 2012.
15
CHEN E Y , SSUER S , MESHII M , et al. Fatigue microcrack distributions and the reliability of a nickel base super alloy[J]. International Journal Fatigue, 1997, 19 (93): 75- 82.
doi: 10.1016/S0142-1123(97)00015-7
WANG P , DONG J X , ZHANG M C , et al. Analysis of fatigue/creep crack propagations rated and a-N curves of GH864 alloy[J]. Rare Metal Materials and Engineering, 2011, 40 (4): 630- 634.