Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (2): 80-87    DOI: 10.11868/j.issn.1001-4381.2015.000728
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
橡胶粒子对微发泡聚丙烯复合材料发泡行为与力学性能的影响
何跃1,2,3, 蒋团辉2, 刘阳夫2,3, 龚维1,2,3, 何力2,3
1 贵州师范大学 材料与建筑工程学院, 贵阳 550014;
2 国家复合改性聚合物材料工程技术研究中心, 贵阳 550014;
3 贵州大学 材料与冶金学院, 贵阳 550025
Influence of Rubber Powders on Foaming Behavior and Mechanical Properties of Foamed Polypropylene Composites
HE Yue1,2,3, JIANG Tuan-hui2, LIU Yang-fu2,3, GONG Wei1,2,3, HE Li2,3
1 School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550014, China;
2 National Engineering Research Center for Compounding and Modification of Polymer Materials, Guiyang 550014, China;
3 College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
全文: PDF(7543 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用型腔体积可控注塑发泡装置制备微发泡聚丙烯(PP)/粉末橡胶复合材料,通过橡胶粒子的分散性以及复合材料的结晶行为,研究不同橡胶粒子对聚丙烯复合材料发泡行为和力学性能的影响。结果表明:橡胶粒子的加入使微发泡聚丙烯材料的泡孔分布细密而均匀,微发泡聚丙烯/马来酸酐接枝聚丙烯/粉末丁腈胶(PP/PP-MAH/NBR)复合材料的发泡质量较理想,其泡孔密度和尺寸分别为7.64×106个/cm3,29.78μm;综合泡孔结构和力学性能,微发泡聚丙烯/聚丙烯接枝马来酸酐/粉末羧端基丁腈胶(PP/PP-MAH/CNBR)复合材料的力学性能最优,与纯PP比较其冲击强度提升了2.2倍,拉伸强度仅仅降低了26%,是理想的微发泡复合材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何跃
蒋团辉
刘阳夫
龚维
何力
关键词 聚丙烯橡胶粒子发泡行为结晶行为力学性能    
Abstract:Polypropylene/rubber powders composites with different kinds of rubber powders were foamed by injection molding machine equipped with volume-adjustable cavity. The effect of dispersity of rubber powders and crystallization behavior of composites on the foaming behavior and mechanical properties was investigated. The results show that the addition of rubber powders can improve the cell structure of foamed PP with fine and uniform cell distribution. And cell density and size of PP/PP-MAH/NBR foams are 7.64×106cell/cm3 and 29.78μm respectively, which are the best among these foams. Combining cell structures with mechanical properties, notch impact strength of PP/PP-MAH/CNBR composites increases approximately by 2.2 times while tensile strength is reduced just by 26% compared with those of the pure PP. This indicates that PP/PP-MAH/CNBR composites are ideal foamed materials.
Key wordspolypropylene    rubber powder    foaming behavior    crystallization behavior    mechanical property
收稿日期: 2015-06-09      出版日期: 2017-02-23
中图分类号:  TQ328.2  
通讯作者: 龚维(1974-),男,博士,教授,研究方向:发泡聚合物材料,联系地址:贵州省贵阳市白云区白云北路A2-6号(550014),gw20030501@163.com     E-mail: gw20030501@163.com
引用本文:   
何跃, 蒋团辉, 刘阳夫, 龚维, 何力. 橡胶粒子对微发泡聚丙烯复合材料发泡行为与力学性能的影响[J]. 材料工程, 2017, 45(2): 80-87.
HE Yue, JIANG Tuan-hui, LIU Yang-fu, GONG Wei, HE Li. Influence of Rubber Powders on Foaming Behavior and Mechanical Properties of Foamed Polypropylene Composites. Journal of Materials Engineering, 2017, 45(2): 80-87.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000728      或      http://jme.biam.ac.cn/CN/Y2017/V45/I2/80
[1] NAM P H, MAITI P, OKAMOTO M, et al. Foam processing and cellular structure of polypropylene/clay nanocomposites[J]. Polymer Engineering & Science, 2002,42(9):1907-1918.
[2] KERAMATI M, GHASEMI I, KARRABI M. Microcellular foaming of PP/EPDM/organoclay nanocomposites:the effect of the distribution of nanoclay on foam morphology[J].Polymer Journal, 2012, 44(5):433-438.
[3] KERAMATI M, GHASEMI I, KARRABI M, et al. Production of microcellular foam based on PP/EPDM:the effects of processing parameters and nanoclay using response surface methodology[J]. E-Polymers, 2013,12(1):612-628.
[4] MAHARSIA R, GUPTA N, JERRO H D. Investigation of flexural strength properties of rubber and nanoclay reinforced hybrid syntactic foams[J]. Materials Science & Engineering:A, 2005,417(1):249-258.
[5] GUPTA N, MAHARSIA R. Enhancement of energy absorption in syntactic foams by nanoclay incorporation for sandwich core applications[J].Applied Composite Materials, 2005,12(3):247-261.
[6] GUPTA N, MAHARSIA R, JERRO H D. Enhancement of energy absorption characteristics of hollow glass particle filled composites by rubber addition[J]. Materials Science & Engineering:A,2004,395(1):233-240.
[7] GUPTA N, ZELTMANN S E, SHUNMUGASAMY V C, et al. Applications of polymer matrix syntactic foams[J]. JOM, 2014,66(2):245-254.
[8] SHARUDIN R W B, OHSHIMA M. Preparation of microcellular thermoplastic elastomer foams from polystyrene-b-ethylene-butylene-b-polystyrene (SEBS) and their blends with polystyrene[J].Journal of Applied Polymer Science, 2013,128(4):2245-2254.
[9] SHAKARAMI K, DONIAVI A, AZDAST T, et al. Microcellular foaming of PVC/NBR thermoplastic elastomer[J]. Materials and Manufacturing Processes, 2013,28(8):872-878.
[10] 程实,顾建华,常乐,等. PP/GF/EPDM微发泡复合材料制备及性能研究[J]. 塑料科技,2014,42(5):55-58. CHENG S, GU J H,CHANG L, et al. Research on properties of PP/GF/EPDM microcellular foam composite materials and its preparation[J]. Plastics Science and Technology,2014,42(5):55-58.
[11] 杨继年,李子全,胡孝昀,等. POE共混增韧二次发泡聚丙烯的力学性能[J].高分子材料科学与工程,2008,24(11):95-98. YANG J N, LI Z Q, HU X Y,et al. Mechanical performance of secondary-foamed polypropylene toughened by ethylene-1-octene copolymer[J]. Polymeric Materials Science and Engineering, 2008, 24(11):95-98.
[12] 张平,杨永,王晓军,等. PP/HDPE/EPDM复合体系微孔发泡实验[J].塑料,2010,39(1):61-63. ZHANG P, YANG Y, WANG X J,et al. Experimental on microcellular foaming of PP/HDPE/EPDM blends[J].Plastics,2010,39(1):61-63.
[13] GONG W, LIU K J, ZHANG C,et al. Foaming behavior and mechanical properties of microcellular PP/SiO2 composites[J]. International Polymer Processing, 2012,24(2):181-186.
[14] GONG W, GAO J C, JIANG M,et al. Modeling and characterization of the relationship between cell size and mechanical behavior of microcellular PP/mica composites[J]. International Polymer Processing, 2010,25(4):270-274.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 孙莉莉, 吴南, 彭睿. 拉伸处理对碳纳米纤维/聚偏氟乙烯复合材料结晶行为和AC导电性能的影响[J]. 材料工程, 2020, 48(6): 106-111.
[7] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[8] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[9] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[10] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[11] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[12] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[13] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[14] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[15] 刘天豪, 郭胜锋. 铁基块体非晶合金的形成规律与力学性能研究进展[J]. 材料工程, 2020, 48(11): 46-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn