Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (2): 80-87    DOI: 10.11868/j.issn.1001-4381.2015.000728
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
橡胶粒子对微发泡聚丙烯复合材料发泡行为与力学性能的影响
何跃1,2,3, 蒋团辉2, 刘阳夫2,3, 龚维1,2,3,*(), 何力2,3
1 贵州师范大学 材料与建筑工程学院, 贵阳 550014
2 国家复合改性聚合物材料工程技术研究中心, 贵阳 550014
3 贵州大学 材料与冶金学院, 贵阳 550025
Influence of Rubber Powders on Foaming Behavior and Mechanical Properties of Foamed Polypropylene Composites
Yue HE1,2,3, Tuan-hui JIANG2, Yang-fu LIU2,3, Wei GONG1,2,3,*(), Li HE2,3
1 School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550014, China
2 National Engineering Research Center for Compounding and Modification of Polymer Materials, Guiyang 550014, China
3 College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
全文: PDF(7543 KB)   HTML ( 16 )  
输出: BibTeX | EndNote (RIS)      
摘要 

利用型腔体积可控注塑发泡装置制备微发泡聚丙烯(PP)/粉末橡胶复合材料,通过橡胶粒子的分散性以及复合材料的结晶行为,研究不同橡胶粒子对聚丙烯复合材料发泡行为和力学性能的影响。结果表明:橡胶粒子的加入使微发泡聚丙烯材料的泡孔分布细密而均匀,微发泡聚丙烯/马来酸酐接枝聚丙烯/粉末丁腈胶(PP/PP-MAH/NBR)复合材料的发泡质量较理想,其泡孔密度和尺寸分别为7.64×106个/cm3,29.78μm;综合泡孔结构和力学性能,微发泡聚丙烯/聚丙烯接枝马来酸酐/粉末羧端基丁腈胶(PP/PP-MAH/CNBR)复合材料的力学性能最优,与纯PP比较其冲击强度提升了2.2倍,拉伸强度仅仅降低了26%,是理想的微发泡复合材料。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何跃
蒋团辉
刘阳夫
龚维
何力
关键词 聚丙烯橡胶粒子发泡行为结晶行为力学性能    
Abstract

Polypropylene/rubber powders composites with different kinds of rubber powders were foamed by injection molding machine equipped with volume-adjustable cavity. The effect of dispersity of rubber powders and crystallization behavior of composites on the foaming behavior and mechanical properties was investigated. The results show that the addition of rubber powders can improve the cell structure of foamed PP with fine and uniform cell distribution. And cell density and size of PP/PP-MAH/NBR foams are 7.64×106cell/cm3 and 29.78μm respectively, which are the best among these foams. Combining cell structures with mechanical properties, notch impact strength of PP/PP-MAH/CNBR composites increases approximately by 2.2 times while tensile strength is reduced just by 26% compared with those of the pure PP. This indicates that PP/PP-MAH/CNBR composites are ideal foamed materials.

Key wordspolypropylene    rubber powder    foaming behavior    crystallization behavior    mechanical property
收稿日期: 2015-06-09      出版日期: 2017-02-23
中图分类号:  TQ328.2  
基金资助:国家自然科学基金资助项目(21264004);贵州省科技厅重大专项(20126023)
通讯作者: 龚维     E-mail: gw20030501@163.com
作者简介: 龚维(1974-),男,博士,教授,研究方向:发泡聚合物材料,联系地址:贵州省贵阳市白云区白云北路A2-6号(550014),gw20030501@163.com
引用本文:   
何跃, 蒋团辉, 刘阳夫, 龚维, 何力. 橡胶粒子对微发泡聚丙烯复合材料发泡行为与力学性能的影响[J]. 材料工程, 2017, 45(2): 80-87.
Yue HE, Tuan-hui JIANG, Yang-fu LIU, Wei GONG, Li HE. Influence of Rubber Powders on Foaming Behavior and Mechanical Properties of Foamed Polypropylene Composites. Journal of Materials Engineering, 2017, 45(2): 80-87.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000728      或      http://jme.biam.ac.cn/CN/Y2017/V45/I2/80
Fig.1  PP/橡胶粒子复合材料断面刻蚀扫描电镜照片 (a)PP/CNBR;(b)PP/PP-MAH/CNBR;(c)PP/NBR;(d)PP/PP-MAH/NBR
Fig.2  橡胶粒子对泡孔平均尺寸(a)和泡孔密度(b)的影响
Fig.3  微孔发泡复合材料泡孔结构及泡孔正态分布 (a)PP/CNBR 97/3;(b)PP/PP-MAH/CNBR 94/3/3;(c)PP/NBR 97/3;(d)PP/PP-MAH/NBR 94/3/3;(e)纯PP
Fig.4  聚丙烯/橡胶粒子复合材料以10℃/min的降温结晶图
PPPP/CNBR 97/3PP/PP-MAH/CNBR 94/3/3PP/NBR97/3PP/PP-MAH/NBR 94/3/3
120.26124.42123.87121.78125.11
Table 1  聚丙烯/橡胶粒子复合材料的降温结晶起始温度(℃)
Fig.5  橡胶粒子对聚丙烯复合材料力学性能的影响 (a)拉伸强度;(b)缺口冲击强度
Fig.6  聚丙烯/橡胶粒子复合材料的拉伸载荷-位移曲线 (a)未发泡;(b)发泡
Fig.7  PP/PP-MAH/NBR发泡试样断面刻蚀SEM照片
Fig.8  聚丙烯/橡胶粒子微发泡复合材料缺口冲击裂纹扩展示意图 (a)裂纹引发;(b)~(d)裂纹扩展及引发的银纹和剪切带;(e)裂纹贯穿试样
Fig.9  微发泡复合材料的动态力学曲线图 (a)储能模量;(b)损耗模量;(c)损耗正切角
1 NAM P H , MAITI P , OKAMOTO M , et al. Foam processing and cellular structure of polypropylene/clay nanocomposites[J]. Polymer Engineering & Science, 2002, 42 (9): 1907- 1918.
2 KERAMATI M , GHASEMI I , KARRABI M . Microcellular foaming of PP/EPDM/organoclay nanocomposites:the effect of the distribution of nanoclay on foam morphology[J]. Polymer Journal, 2012, 44 (5): 433- 438.
doi: 10.1038/pj.2012.2
3 KERAMATI M , GHASEMI I , KARRABI M , et al. Production of microcellular foam based on PP/EPDM:the effects of processing parameters and nanoclay using response surface methodology[J]. E-Polymers, 2013, 12 (1): 612- 628.
4 MAHARSIA R , GUPTA N , JERRO H D . Investigation of flexural strength properties of rubber and nanoclay reinforced hybrid syntactic foams[J]. Materials Science & Engineering:A, 2005, 417 (1): 249- 258.
5 GUPTA N , MAHARSIA R . Enhancement of energy absorption in syntactic foams by nanoclay incorporation for sandwich core applications[J]. Applied Composite Materials, 2005, 12 (3): 247- 261.
6 GUPTA N , MAHARSIA R , JERRO H D . Enhancement of energy absorption characteristics of hollow glass particle filled composites by rubber addition[J]. Materials Science & Engineering:A, 2004, 395 (1): 233- 240.
7 GUPTA N , ZELTMANN S E , SHUNMUGASAMY V C , et al. Applications of polymer matrix syntactic foams[J]. JOM, 2014, 66 (2): 245- 254.
doi: 10.1007/s11837-013-0796-8
8 SHARUDIN R W B , OHSHIMA M . Preparation of microcellular thermoplastic elastomer foams from polystyrene-b-ethylene-butylene-b-polystyrene (SEBS) and their blends with polystyrene[J]. Journal of Applied Polymer Science, 2013, 128 (4): 2245- 2254.
doi: 10.1002/app.v128.4
9 SHAKARAMI K , DONIAVI A , AZDAST T , et al. Microcellular foaming of PVC/NBR thermoplastic elastomer[J]. Materials and Manufacturing Processes, 2013, 28 (8): 872- 878.
10 程实, 顾建华, 常乐, 等. PP/GF/EPDM微发泡复合材料制备及性能研究[J]. 塑料科技, 2014, 42 (5): 55- 58.
10 CHENG S , GU J H , CHANG L , et al. Research on properties of PP/GF/EPDM microcellular foam composite materials and its preparation[J]. Plastics Science and Technology, 2014, 42 (5): 55- 58.
11 杨继年, 李子全, 胡孝昀, 等. POE共混增韧二次发泡聚丙烯的力学性能[J]. 高分子材料科学与工程, 2008, 24 (11): 95- 98.
11 YANG J N , LI Z Q , HU X Y , et al. Mechanical performance of secondary-foamed polypropylene toughened by ethylene-1-octene copolymer[J]. Polymeric Materials Science and Engineering, 2008, 24 (11): 95- 98.
12 张平, 杨永, 王晓军, 等. PP/HDPE/EPDM复合体系微孔发泡实验[J]. 塑料, 2010, 39 (1): 61- 63.
12 ZHANG P , YANG Y , WANG X J , et al. Experimental on microcellular foaming of PP/HDPE/EPDM blends[J]. Plastics, 2010, 39 (1): 61- 63.
13 GONG W , LIU K J , ZHANG C , et al. Foaming behavior and mechanical properties of microcellular PP/SiO2 composites[J]. International Polymer Processing, 2012, 24 (2): 181- 186.
14 GONG W , GAO J C , JIANG M , et al. Modeling and characterization of the relationship between cell size and mechanical behavior of microcellular PP/mica composites[J]. International Polymer Processing, 2010, 25 (4): 270- 274.
doi: 10.3139/217.2339
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[4] 李守佳, 罗春燕, 陈卫星, 方铭港, 孙健鑫. 氧化石墨烯接枝聚乙二醇对左旋聚乳酸结晶行为和热稳定性的影响[J]. 材料工程, 2022, 50(8): 99-106.
[5] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[6] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[7] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[8] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[9] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[10] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[11] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[12] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[13] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[14] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[15] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn