Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (3): 47-53    DOI: 10.11868/j.issn.1001-4381.2015.000731
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
DP980高强钢动态拉伸力学行为
田文扬1, 刘奋1, 韦春华1, 夏卫生1, 杨云珍1,2
1. 华中科技大学 材料成形与模具技术国家重点实验室, 武汉 430074;
2. 武汉理工大学 汽车工程学院, 武汉 430070
Mechanical Behavior of DP980 High Strength Steel Under Dynamic Tensile Tests
TIAN Wen-yang1, LIU Fen1, WEI Chun-hua1, XIA Wei-sheng1, YANG Yun-zhen1,2
1. State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
2. School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
全文: PDF(30106 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 对比分析DP980高强钢在应变速率10-3~103s-1范围内的动态拉伸实验结果,研究其力学行为以及断裂模式特点。结果表明:应变速率从准静态(10-3s-1)增加至100s-1过程中,强度基本保持不变,塑性下降了7.5%;应变速率从100s-1增加至103s-1过程中,强度不断增大,而塑性在100~102s-1范围内上升14%,随后在102~103s-1范围内下降了24.7%;应变速率敏感系数m始终随应变速率的增加而升高。变形过程中,位错增殖强化和加速阻力是强度上升的主要原因。塑性变形集中在铁素体中,微孔裂纹主要沿马氏体/铁素体交界扩展。试样沿厚度方向上的宏观断口,在应变速率小于101s-1时呈“V”形杯锥状,在应变速率高于101s-1时则是与拉伸方向成约45°的纯剪切型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田文扬
刘奋
韦春华
夏卫生
杨云珍
关键词 双相高强钢动态拉伸应变速率力学行为断口形貌    
Abstract:The mechanical behavior and fracture modes of DP980 high strength steels were studied by comparing the results of dynamic tensile tests at strain rates from 10-3s-1 to 103s-1. The results show that the strength of DP980 steel remains almost unchanged and the plasticity decreases by 7.5% as the strain rate increasing from quasi-static(10-3s-1) to 100s-1. When the strain rate increases from 100s-1 to 103s-1, the strength keeps increasing, while the plasticity increases by 14% at the strain rate ranging from 100s-1 to 102s-1, but then follows by a decrease of 24.7% in the range of 102s-1 to 103s-1. The strain rate sensitivity coefficient m increases with the increasing of the strain rate. During the plastic deformation, the multiplication reinforcement of dislocation and the motion resistance due to the acceleration of dislocation in ferrite matrix are the main reasons for the strength enhancement. The plastic deformation concentrates in the ferrite, and the microvoids and cracks propagate along the martensite-ferrite interface. In the thickness direction of specimen, the macrographs of fracture are "V" shape cups when strain rate is lower than 101s-1, but the pure sheer shape with 45° to the tensile direction when strain rate is over 101s-1.
Key wordsdual-phase high strength steel    dynamic tensile    strain rate    mechanical behavior    fractograph
收稿日期: 2015-06-09      出版日期: 2017-03-22
中图分类号:  O347.3  
通讯作者: 杨云珍(1977-),女,博士,讲师,研究方向为汽车轻量化、汽车振动与碰撞安全性,联系地址:湖北省武汉市洪山区珞狮路122号武汉理工大学汽车工程学院(430070),E-mail:yangyunzhen@whut.edu.cn     E-mail: yangyunzhen@whut.edu.cn
引用本文:   
田文扬, 刘奋, 韦春华, 夏卫生, 杨云珍. DP980高强钢动态拉伸力学行为[J]. 材料工程, 2017, 45(3): 47-53.
TIAN Wen-yang, LIU Fen, WEI Chun-hua, XIA Wei-sheng, YANG Yun-zhen. Mechanical Behavior of DP980 High Strength Steel Under Dynamic Tensile Tests. Journal of Materials Engineering, 2017, 45(3): 47-53.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000731      或      http://jme.biam.ac.cn/CN/Y2017/V45/I3/47
[1] 马鸣图,易洪亮,路洪州,等. 论汽车轻量化[J]. 中国工程科学,2009,11(9):20-25. MA M T, YI H L, LU H Z, et al. On the light weighting of automobile[J]. Chinese Engineer Science,2009,11(9):20-25.
[2] LI G H, XIONG F, LONG J Q. Applications of lightweight of car body material and new technology[J]. Development and Application of Materials,2009,(2):87-93.
[3] WANG L, YANG X, LU J. Development of high strength steel sheets for lightweight automobile[J]. Iron & Steel, 2006,41(9):1-8.
[4] JIANG H T, TANG D, MI Z L. Latest progress in development and application of advanced high strength steels for automobiles[J]. Journal of Iron and Steel Research, 2007,19(8):1-6.
[5] LU J X, WANG L. Production and application of high strength steel sheet for automobile[J]. Automobile Technology & Material,2004,(2):3-8.
[6] KUZIAK R, KAWALLA R, WAENGLER S. Advanced high strength steels for automotive industry[J]. Archives of Civil and Mechanical Engineering,2008,8(2):103-117.
[7] 马鸣图,吴宝榕. 双相钢——物理和力学冶金[M]. 2版.北京:冶金工业出版社,2009. MA M T, WU B R. Dual Phase Steel-Physical and Mechanical Metallurgy[M]. 2ed.Beijing:Metall Ind Press,2009.
[8] 田志强,唐荻,江海涛,等. 汽车用双相钢的研究与生产现状[J]. 机械工程材料,2009,33(4):1-5. TIAN Z Q, TANG D, JIANG H T, et al. Research and production status of dual phase steels for automobiles[J]. Materials for Mechanical Engineering, 2009, 33(4):1-5.
[9] 朱国明,邝霜,陈贵讲,等. 马氏体对C-Si-Mn冷轧双相钢屈服特性的影响[J]. 材料工程,2011,(4):66-70. ZHU G M, KUANG S, CHEN G J, et al. Effect of martensite on yield characteristics of cold rolled C-Si-Mn dual phase steel[J]. Journal of Materials Engineering,2011,(4):66-70.
[10] 刘志良,李春福,王义文,等. 淬火温度对双相钢组织性能的影响[J]. 金属热处理,2013,38(12):62-64. LIU Z L, LI C F, WANG Y W, et al. Effects of quenching temperature on microstructure and mechanical properties of dual phase steel[J]. Heat Treatment of Metals,2013,38(12):62-64.
[11] GHADBEIGI H, PINNA C, CELOTTO S, et al. Local plastic strain evolution in a high strength dual-phase steel[J]. Materials Science and Engineering:A,2010,527(18):5026-5032.
[12] 代启锋,宋仁伯,关小霞. 超高强铁素体-马氏体双相钢在动态拉伸变形条件下组织和性能研究[J]. 材料工程,2013,(4):6-11. DAI Q F, SONG R B, GUAN X X. Microstructure and properties of ultra-high strength ferrite-martensite dual phase steel tested under dynamic tensile condition[J]. Journal of Materials Engineering,2013,(4):6-11.
[13] 董丹阳,刘杨,王磊,等. 应变速率对DP780钢动态拉伸变形行为的影响[J]. 金属学报,2013,49(2):159-166. DONG D Y, LIU Y, WANG L, et al. Effect of strain rate on dynamic deformation behavior of DP780 steel[J]. Acta Metallurgica Sinica,2013,49(2):159-166.
[14] 何忠平. 应变速率对不同强度级别TRIP钢力学行为影响的研究[D]. 上海:上海大学,2012. HE Z P. Impact of strain rate on the mechanical properties of various grade TRIP-aided steels[D]. Shanghai:Shanghai University,2012.
[15] 徐庭栋,刘珍君,于鸿垚,等. 拉伸试验测试金属韧性的不确定性:中温脆性和应变速率脆性[J]. 物理学报,2014,63(22):228101. XU T D, LIU Z J, YU H Y, et al. Measurement uncertainty of metallic ductility in tensile tests:intermediate temperature embrittlement and strain rate embrittlement[J]. Acta Physica Sinica,2014,63(22):228101.
[16] ARMSTRONG R W, WALLEY S M. High strain rate properties of metals and alloys[J]. International Materials Reviews,2008,53(3):105-128.
[17] 张晓华,邱晓刚,卢国清,等. 应变速率敏感系数(m值)测试方法探讨[J]. 钢铁钒钛,2001,22(1):63-65. ZHANG X H, QIU X G, LU G Q, et al. Study of test and measurement method for coefficient (m value) of strain rate sensitivity[J]. Iron Steel Vanadium Titanium,2001,22(1):63-65.
[18] 宋玉泉,程永春,刘术梅. 超塑性拉伸变形应变速率敏感性指数的试验测量及其精细分析[J]. 机械工程学报,2001,37(4):1-7. SONG Y Q, CHENG Y C, LIU S M. Experimental measurement and elaborate analysis of strain-rate sensitivity exponent in tensile forming[J]. Chinese Journal of Mechanical Engineering, 2001,37(4):1-7.
[19] READ W T. Dislocations and plastic deformation[J]. Physics Today,1953,(6):10.
[20] MEYERS M A, CHAWLA K K. Mechanical Behavior of Materials[M]. Cambridge:Cambridge University Press,2009.
[21] 方树铭,刘捷,计汉容. 位错滑移运动与运动阻力辨析[J]. 云南冶金,2013,42(5):66-71. FANG S M, LIU J, JI H R. Analysis on dislocation slipping and moving resistance[J]. Yunnan Metallurgy,2013,42(5):66-71.
[22] EVERS L P, BREKELMANS W A M, GEERS M G D. Scale dependent crystal plasticity framework with dislocation density and grain boundary effects[J]. International Journal of Solids and Structures,2004,41(18):5209-5230.
[23] 刘萍,陈忠家. 塑性变形中的位错动力学研究[J]. 合肥工业大学学报,2011,34(3):341-344. LIU P, CHEN Z J. Study of the dislocation dynamics in the plastic deformation[J]. Journal of Hefei University of Technology,2011,34(3):341-344.
[24] 陈志永,张新明,周卓平. {110}〈111〉,{112}〈111〉和{123}〈111〉 多滑移的屈服应力状态[J]. 金属学报,2003,39(1):17-21. CHEN Z Y, ZHANG X M, ZHOU Z P. Yield stress states for {110}〈111〉,{112}〈111〉and {123}〈111〉 multiple slip[J]. Acta Metallurgica Sinica,2003,39(1):17-21.
[25] 钟群鹏,赵子华. 断口学[M]. 北京:高等教育出版社,2006. ZHONG Q P, ZHAO Z H. Fractography[M]. Beijing:Higher Education Press,2006.
[26] SUNG J H, KIM J H, WAGONER R H. A plastic constitutive equation incorporating strain, strain-rate, and temperature[J]. International Journal of Plasticity,2010,26(12):1746-1771.
[27] KAPOOR R, NEMAT-NASSER S. Determination of temperature rise during high strain rate deformation[J]. Mechanics of Materials,1998,27(1):1-12.
[1] 吴伟, 郝文魁, 李晓刚, 钟平, 董超芳, 刘智勇, 肖葵. 高Cl-环境对M152和17-4PH高强钢应力腐蚀开裂行为的影响[J]. 材料工程, 2018, 46(2): 105-114.
[2] 何柏林, 江明明, 于影霞, 李力. 超声冲击处理MB8镁合金十字接头的表层组织及疲劳性能[J]. 材料工程, 2018, 46(10): 70-76.
[3] 孙大智, 薛克敏, 董力源, 李萍. 扭转圈数对高压扭转SiCP/Al复合材料界面扩散行为和组织性能的影响[J]. 材料工程, 2017, 45(7): 13-18.
[4] 张晓雯, 吴南, 张旋, 马丽婷, 厉蕾. 透明聚碳酸酯材料疲劳断裂行为[J]. 材料工程, 2017, 45(11): 30-35.
[5] 马少华, 王勇刚, 回丽, 许良. 湿热环境对碳纤维环氧树脂复合材料弯曲性能的影响[J]. 材料工程, 2016, 44(2): 81-87.
[6] 方光武, 高希光, 宋迎东. 针刺C/SiC复合材料拉-压疲劳特性与失效机理[J]. 材料工程, 2016, 44(11): 78-82.
[7] 吕世泉, 何国球, 沈月, 田丹丹, 刘晓山, 林国斌, 任敬东, 胡杰. 菱形加载路径下35CrMoA钢的微动疲劳行为[J]. 材料工程, 2016, 44(1): 96-102.
[8] 王玉昌, 兰鹏, 李杨, 张家泉. 合金元素对Fe-Mn-C系TWIP钢力学行为的影响[J]. 材料工程, 2015, 43(9): 30-38.
[9] 许天旱, 冯耀荣. III型载荷分量对不同显微组织套管钻井用钢断裂韧性的影响[J]. 材料工程, 2015, 43(9): 66-73.
[10] 许天旱, 王荣, 冯耀荣, 雒设计, 王党会, 杨宝. 应力比对K55套管钻井钢疲劳裂纹扩展性能的影响[J]. 材料工程, 2015, 43(6): 79-84.
[11] 赵勇桃, 董俊慧, 张韶慧, 刘宗昌, 李文学. P92钢高温拉伸断口形貌的研究[J]. 材料工程, 2015, 43(4): 85-91.
[12] 高禹, 王钊, 陆春, 包建文, 宋恩鹏, 董尚利. 高性能树脂基复合材料典型空天环境下动态力学行为研究现状[J]. 材料工程, 2015, 43(3): 106-112.
[13] 刘正, 董阳, 毛萍莉, 于金程. 轧制AZ31镁合金板材(4mm)动态压缩性能与失效行为[J]. 材料工程, 2015, 43(2): 61-66.
[14] 杨东平, 胥聪敏, 罗金恒, 王珂, 李辉辉. 0.8设计系数用X80管线钢在近中性pH溶液中的应力腐蚀开裂行为[J]. 材料工程, 2015, 43(1): 89-95.
[15] 郑漫庆, 王高潮, 喻淼真, 徐雪峰. 应变速率循环法构建TC4-DT钛合金本构方程[J]. 材料工程, 2014, 0(8): 32-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn