Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (10): 124-131    DOI: 10.11868/j.issn.1001-4381.2015.000802
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
复合材料胶接修理层合板拉伸性能及影响参数
聂恒昌1, 徐吉峰2, 关志东1,*(), 黎增山1, 王鑫1
1 北京航空航天大学 航空科学与工程学院, 北京 100191
2 中国商用飞机有限责任公司 北京民用飞机技术研究中心, 北京 102211
Tensile Property and Influence Parameters of Bonded Repaired Composite Laminates
Heng-chang NIE1, Ji-feng XU2, Zhi-dong GUAN1,*(), Zeng-shan LI1, Xin WANG1
1 School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
2 Beijing Aeronautical Science & Technology Research Institute, Commercial Aircraft Corporation of China, Ltd., Beijing 102211, China
全文: PDF(8618 KB)   HTML ( 16 )  
输出: BibTeX | EndNote (RIS)      
摘要 

胶接修理是效率较高、应用较广的复合材料结构修补技术。对采用不同参数进行挖补和贴补修理的复合材料层合板的拉伸性能进行实验研究。结果表明:挖补修理实验件的强度恢复率约为66%~91%,贴补修理实验件的强度恢复率约为44%~61%。在挖补修理实验件中,减小挖补斜度、采用双面挖补、使用热压罐固化,在贴补修理实验件中,采用双面贴补、增大补片尺寸,均可得到更高的强度恢复率。在实验基础上建立的有限元模型,能够有效预测实验件的失效载荷、破坏模式,并可分析实验件的应力分布和渐进损伤过程,为设计修理方案提供参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
聂恒昌
徐吉峰
关志东
黎增山
王鑫
关键词 层合板挖补修理贴补修理强度恢复率有限元模拟渐进损伤    
Abstract

Bonded repair is efficient and widely-used repair technique for composite structures. Tests were conducted to study the tensile property of scarf repaired and external bonded repaired composite laminates with different repair parameters. The results show that the recovery of failure strength of scarf repaired laminates is about 66%-91% while external bonded repaired laminates is about 44%-61%.When reducing scarf ratio, repairing in double sides, curing in autoclaves, the scarf repair specimens can reach a higher recovery rate of failure strength. When repairing in double sides, enlarging the size of patches, the external bonded repaired specimens can also reach a higher recovery rate of failure strength. Based on the test results, finite element models were established to predict the failure loads and failure modes of specimens, and to analyse the stress distribution and progressive damage process of specimens, which can provide a reference to the designing in the repair projects.

Key wordslaminate    scarf repair    external bonded repair    recovery rate of strength    finite element modelling    progressive damage
收稿日期: 2015-06-26      出版日期: 2017-10-18
中图分类号:  TB33  
通讯作者: 关志东     E-mail: zdguan@buaa.edu.cn
作者简介: 关志东(1964-), 男, 教授, 博士, 研究方向:飞机复合材料结构设计, 联系地址:北京市海淀区学院路37号北京航空航天大学新主楼D506(100191), E-mail:zdguan@buaa.edu.cn
引用本文:   
聂恒昌, 徐吉峰, 关志东, 黎增山, 王鑫. 复合材料胶接修理层合板拉伸性能及影响参数[J]. 材料工程, 2017, 45(10): 124-131.
Heng-chang NIE, Ji-feng XU, Zhi-dong GUAN, Zeng-shan LI, Xin WANG. Tensile Property and Influence Parameters of Bonded Repaired Composite Laminates. Journal of Materials Engineering, 2017, 45(10): 124-131.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000802      或      http://jme.biam.ac.cn/CN/Y2017/V45/I10/124
Fig.1  实验件基本尺寸(a)挖补修理;(b)贴补修理
E11/GPa E22/GPa E33/GPa G12/GPa G23/GPa G13/GPa ν12 ν23 ν13 XT/MPa XC/MPa YT/MPa YC/MPa S/MPa
156.50 8.25 8.25 4.37 2.81 4.37 0.32 0.47 0.32 2986.30 1508.00 50.00 220.00 60.30
Table 1  T800力学性能
E/GPa G/GPa ν tn0=ts0=tt0/
MPa
GnC=GsC=GtC/
(N·mm-1)
1 0.385 0.3 24.5 7.5
Table 2  J116B胶黏剂力学性能
Group Damaged ply Damaged diameter/mm
WX-1 0 25
WX-2 4 25
WX-3 8 25
Table 3  未修理层合板实验矩阵
Group Damaged ply Repair method Scarf ratio Curing technique
WP-1 4 Single-side repair 1:20 Autoclave
WP-2 4 Single-side repair 1:30 Autoclave
WP-3 4 Single-side repair 1:40 Autoclave
WP-4 8 Single-side repair 1:30 Autoclave
WP-5 8 Double-side repair 1:30 Autoclave
WP-6 4 Single-side repair 1:30 Hot bonder
Table 4  挖补修理层合板实验矩阵
Group Damaged ply Repair method Patch ply Patch
diameter/mm
TP-1 8 Single-side repair 6 75
TP-2 8 Single-side repair 6 100
TP-3 8 Double-side repair 6 75
TP-4 8 Double-side repair 6 100
Table 5  贴补修理层合板实验矩阵
Fig.2  未修理实验件的破坏模式(a)损伤4层;(b)损伤8层
Fig.3  挖补修理实验件的破坏模式
(a)正面;(b)反面
Fig.4  贴补修理实验件的破坏模式(a)正面;(b)侧面
Group Failure load/kN Recovery rate of strength/%
WX-1 225.17 100.00
WX-2 128.91 57.25
WX-3 101.17 44.93
WP-1 164.42 73.02
WP-2 181.82 80.75
WP-3 203.79 90.50
WP-4 149.74 66.50
WP-5 162.86 72.33
WP-6 149.90 66.57
TP-1 100.01 44.42
TP-2 117.93 52.37
TP-3 116.89 51.91
TP-4 136.53 60.63
Table 6  各组实验件平均破坏载荷及强度恢复率
Fig.5  胶接修理层合板有限元模型
(a)挖补修理层合板;(b)贴补修理层合板
Group Test/kN FEA/kN Error/%
WP-1 164.42 169.67 +3.19
WP-2 181.82 175.92 -3.24
WP-3 203.79 181.8 -10.79
WP-4 149.74 152.51 +1.85
WP-5 162.86 162.51 -0.21
TP-1 100.01 109.71 +9.70
TP-2 117.93 119.53 +1.36
TP-3 116.89 131.45 +12.46
TP-4 136.53 150.41 +10.17
Table 7  有限元计算与实验结果的破坏载荷对比
Fig.6  单面挖补修理模型的应力云图
(a)母板;(b)母板0°铺层;(c)补片;(d)补片外覆盖层;(e)胶层
Fig.7  单面贴补修理模型的应力云图(a)母板;(b)母板0°铺层;(c)补片;(d)胶层
Fig.8  单面挖补修理模型沿胶层中面的应力分布
Fig.9  单面贴补修理模型沿胶层中面的应力分布
Fig.10  单面挖补修理模型的损伤扩展(a)损伤起始;(b)80%峰值载荷;(c)峰值载荷;(d)完全失效
Fig.11  单面贴补修理模型的损伤扩展
(a)损伤起始;(b)80%峰值载荷;(c)峰值载荷;(d)完全失效
1 杜善义, 关志东. 我国大型客机先进复合材料应对策略思考[J]. 复合材料学报, 2008, 25 (1): 1- 10.
1 DU S Y , GUAN Z D . Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica, 2008, 25 (1): 1- 10.
2 田秀云, 杜洪增. 复合材料结构及维修[M]. 北京: 中国民航出版社, 1996.
2 TIAN X Y , DU H Z . Repair of Composite Structures[M]. Beijing: China Civil Aviation Press, 1996.
3 ARMSTRONG K B, BEVAN L G, COLE Ⅱ W F.Care and Repair of Advanced Composites[M]. 2nd ed.Warrendale:SAE International, 2005:258-266.
4 陈绍杰. 复合材料结构修理指南[M]. 北京: 航空工业出版社, 2001.
4 CHEN S J . Manual of Repaired of Composite Structures[M]. Beijing: Aviation Industry Press, 2001.
5 赵美英, 万小朋, 刘浩. 复合材料螺接修补参数优化[J]. 航空学报, 2008, 22 (5): 458- 460.
5 ZHAO M Y , WAN X P , LIU H . Optimization of composite patch bolted repairing parameters[J]. Acta Aeronautica et Astronautica Sinica, 2008, 22 (5): 458- 460.
6 KATNAM K B , SILVA L F M D , YOUNG T M . Bonded repair of composite aircraft structures:a review of scientific challenges and opportunities[J]. Progress in Aerospace Sciences, 2013, 61, 26- 42.
doi: 10.1016/j.paerosci.2013.03.003
7 WANG C H , GUNNION A J . Optimum shapes of scarf repairs[J]. Composites:Part A, 2009, 40 (9): 1407- 1418.
doi: 10.1016/j.compositesa.2009.02.009
8 PINTO A M G , CAMPILHO R D S G , MOURA M F S F D , et al. Numerical evaluation of three-dimensional scarf repairs in carbon-epoxy structures[J]. International Journal of Adhesion & Adhesives, 2010, 30 (5): 329- 337.
9 BREITZMAN T D , IARVE E V , COOK B M , et al. Optimization of a composite scarf repair patch under tensile loading[J]. Composites:Part A, 2009, 40 (12): 1921- 1930.
doi: 10.1016/j.compositesa.2009.04.033
10 RIDHA M , TAN V B C , TAY T E . Traction-separation laws for progressive failure of bonded scarf repair of composite panel[J]. Composite Structures, 2011, 93 (4): 1239- 1245.
doi: 10.1016/j.compstruct.2010.10.015
11 YOO J S , TRUONG V H , PARK M Y , et al. Parametric study on static and fatigue strength recovery of scarf-patch-repaired composite laminates[J]. Composite Structures, 2016, 140, 417- 432.
doi: 10.1016/j.compstruct.2015.12.041
12 NIEDERNHUBER M , HOLTMANNSPÖTTER J , EH-RLICH I . Fiber-oriented repair geometries for composite materials[J]. Composites Part B Engineering, 2016, 94, 327- 337.
doi: 10.1016/j.compositesb.2016.03.027
13 HU F Z , SOUTIS C . Strength prediction of patch-repaired CFRP laminates loaded in compression[J]. Composites Science & Technology, 2000, 60 (7): 1103- 1114.
14 FERNÁNDEZ-CAÑADAS L M , IVÁÑEZ I , SAN-CHEZ-SAEZ S . Influence of the cohesive law shape on the composite adhesively-bonded patch repair behaviour[J]. Composites Part B Engineering, 2016, 91, 414- 421.
doi: 10.1016/j.compositesb.2016.01.056
15 LIU B , XU F , FENG W , et al. Experiment and design methods of composite scarf repair for primary-load bearing structures[J]. Composites Part A Applied Science & Manu-facturing, 2016, 88, 27- 38.
16 郭霞, 关志东, 刘遂, 等. 层压板双面挖补修理的拉伸性能研究及参数分析[J]. 复合材料学报, 2012, 29 (1): 176- 182.
16 GUO X , GUAN Z D , LIU S , et al. Tensile behavior and parameters designing of double-sides flush repair of composite laminates[J]. Acta Materiae Compositae Sinica, 2012, 29 (1): 176- 182.
17 关志东, 刘遂, 郭霞, 等. 含半穿透损伤层合板挖补修理后的拉伸性能[J]. 复合材料学报, 2013, 30 (2): 144- 151.
17 GUAN Z D , LIU S , GUO X , et al. Tensile behavior of scarfing repaired laminates with half-depth damage[J]. Acta Materiae Compositae Sinica, 2013, 30 (2): 144- 151.
18 蓝元沛, 徐吉峰, 杜奎. 剪切载荷作用下复合材料挖补修理层合板实验及有限元分析[J]. 复合材料学报, 2014, 31 (3): 803- 808.
18 LAN Y P , XU J F , DU K . Experimental study and FEA on composite flush-repair laminates under shear load[J]. Acta Materiae Compositae Sinica, 2014, 31 (3): 803- 808.
19 喻梅, 许希武. 复合材料挖补修理结构的压缩强度分析[J]. 中国矿业大学学报, 2008, 37 (5): 709- 714.
19 YU M , XU X W . Study of the compression strength of scarf patch repaired composite structures[J]. Journal of China University of Mining & Technology, 2008, 37 (5): 709- 714.
20 孟凡颢, 陈绍杰, 童小燕. 层压板修理设计中的参数选择问题[J]. 复合材料学报, 2011, 18 (4): 123- 127.
20 MENG F H , CHEN S J , TONG X Y . Selection of the design parameters in laminate repair[J]. Acta Materiae Compositae Sinica, 2011, 18 (4): 123- 127.
21 AL-MANSOURA, 程小全, 寇长河. 单面贴补修理后层合板的拉伸性能[J]. 复合材料学报, 2005, 22 (3): 140- 144.
22 王跃全, 童明波, 朱书华. 复合材料层合板胶接贴补修理渐进损伤分析[J]. 复合材料学报, 2011, 28 (3): 197- 202.
22 WANG Y Q , TONG M B , ZHU S H . Progressive damage analysis on adhesively bonding patch repair of composite laminates[J]. Acta Materiae Compositae Sinica, 2011, 28 (3): 197- 202.
23 相超, 周丽, 宋恩鹏, 等. 拉伸载荷下贴补复合材料层合板的渐进损伤分析[J]. 工程力学, 2014, 31 (10): 234- 241.
23 XIANG C , ZHOU L , SONG E P , et al. Progressive damage analysis of bonding patch-repaired composite laminates under tension loading[J]. Engineering Mechanics, 2014, 31 (10): 234- 241.
24 虞浩清, 刘爱平. 飞机复合材料结构修理[M]. 北京: 中国民航出版社, 2010.
24 YU H Q , LIU A P . Repair of aircraft composite structures[M]. Beijing: China Civil Aviation Press, 2010.
25 刘遂. 飞机复合材料胶接修理结构力学性能研究[D]. 北京: 北京航空航天大学, 2013.
25 LIU S.Research on the mechnical performance of bonded repaired composite airframe structures[D].Beijing:Beihang University, 2013.
26 HASHIN Z . Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47 (2): 329- 334.
doi: 10.1115/1.3153664
27 魏伟. 复合材料层压板胶接修理拉伸强度有效性评估方法研究[D]. 上海: 上海交通大学, 2012.
27 WEI W.Study for the effectiveness analysis on tensile strength of adhesively bonded repairs to composite laminates[D].Shanghai:Shanghai Jiao Tong University, 2012.
28 杨小辉, 胡坤镜, 赵宁, 等. 内聚力界面单元在胶接接头分层仿真中的应用[J]. 计算机仿真, 2010, 27 (10): 317- 320.
doi: 10.3969/j.issn.1006-9348.2010.10.079
28 YANG X H , HU K J , ZHAO N , et al. The simulation of the process of lamina damage in the adhesive bonded joint using the cohesive interface element[J]. Computer Simulation, 2010, 27 (10): 317- 320.
doi: 10.3969/j.issn.1006-9348.2010.10.079
29 CAMANHO P P, DAVILA C G.Mixed-mode decohesion finite elements for the simulation of delamination in composite materials[R].Washington:NASA, 2002.
30 GUNNION A J , HERSZBERG I . Parametric study of scarf joints in composite structures[J]. Composite Structures, 2006, 75 (1/4): 364- 376.
[1] 张祥林, 孟庆春, 许名瑞, 曾本银, 程小全, 孙炜. 吸湿后碳纤维复合材料正交层板拉伸疲劳性能[J]. 材料工程, 2021, 49(8): 169-177.
[2] 李晓宇, 姜良宝, 刘家希, 王敏博, 李佳明, 颜悦. 化学强化铝硅酸盐玻璃表面微观力学行为的有限元模拟[J]. 材料工程, 2021, 49(7): 148-157.
[3] 赵家祥, 李建, 梁志鸿, 邱博, 阚前华. 超弹性NiTi合金率相关相变图案演化模拟[J]. 材料工程, 2021, 49(4): 102-110.
[4] 安子乾, 舒茂盛, 程羽佳, 郭鑫, 程小全. 3钉带衬套复合材料/金属接头拉伸疲劳性能[J]. 材料工程, 2021, 49(12): 164-174.
[5] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[6] 项瑶, 卢立伟, 吴木义, 马旻, 康伟, 刘欢, 唐伦圆. 6061铝合金膨胀-连续剪切变形行为[J]. 材料工程, 2020, 48(12): 111-118.
[7] 张景祺, 林健, 雷永平, 许海亮, 王细波. 316L超薄板激光焊接的失稳变形规律[J]. 材料工程, 2020, 48(12): 126-134.
[8] 李雅芳, 刘皓, 赵义侠. 基于镀银纱线的电加热织物温度场模拟与电热性能[J]. 材料工程, 2019, 47(2): 68-75.
[9] 王程成, 贺德龙, 崔溢. 结构-导电复合材料研究进展[J]. 材料工程, 2018, 46(9): 1-13.
[10] 张亮, 吴文恒, 卢林, 倪晓晴, 何贝贝, 杨启云, 祝国梁, 顾芸仰. 激光选区熔化热输入参数对Inconel 718合金温度场的影响[J]. 材料工程, 2018, 46(7): 29-35.
[11] 王刚, 贾普荣, 黄涛, 张龙. 含切口复合材料层合板拉伸应变集中与失效分析[J]. 材料工程, 2018, 46(2): 134-141.
[12] 董抒华, 李伟东, 丁妍羽, 贾玉玺, 刘刚, 魏春城. 基于“离位”增韧技术Z向注射RTM成型的浸润研究[J]. 材料工程, 2017, 45(9): 52-58.
[13] 王亚杰, 王波, 张龙, 马宏毅. 玻璃纤维-铝合金正交层板的拉伸性能研究[J]. 材料工程, 2015, 43(9): 60-65.
[14] 沈创石, 韩小平, 郭章新, 王彬. 孔口缝合补强复合材料层合板渐进损伤分析[J]. 材料工程, 2014, 0(1): 64-69.
[15] 王东宁, 李嘉禄, 焦亚男. 平纹织物三维细观几何模型和织物防弹实验的有限元模拟[J]. 材料工程, 2013, 0(9): 69-74,78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn