Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (3): 112-118    DOI: 10.11868/j.issn.1001-4381.2015.000850
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
升温速率对7B04铝合金板材晶粒组织和超塑性的影响
陈敏1,2, 叶凌英1,2,*(), 孙大翔1,2, 杨涛1,2, 王国玮1,2, 张新明1,2
1 中南大学 材料科学与工程学院, 长沙 410083
2 中南大学 有色金属材料科学与工程教育部重点实验室, 长沙 410083
Effect of Heating Rate on Grain Structure and Superplasticity of 7B04 Aluminum Alloy Sheets
Min CHEN1,2, Ling-ying YE1,2,*(), Da-xiang SUN1,2, Tao YANG1,2, Guo-wei WANG1,2, Xin-ming ZHANG1,2
1 School of Materials Science and Engineering, Central South University, Changsha 410083, China
2 Key Laboratory of Nonferrous Materials Science and Engineering (Ministry of Education), Central South University, Changsha 410083, China
全文: PDF(9998 KB)   HTML ( 17 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用形变热处理法制备7B04铝合金细晶板材,利用EBSD和高温拉伸等实验方法研究退火过程中升温速率对板材晶粒组织和超塑性的影响。结果表明:升温速率为5.0×10-3K/s时,退火后板材的轧向和法向的平均晶粒尺寸分别为28.2μm和13.9μm,形核效率为1/1000。随着升温速率的提高,合金平均晶粒尺寸不断减小,形核效率不断提升。当升温速率提高至30.0K/s时,其轧向和法向的平均晶粒尺寸分别降低至9.9μm和5.1μm,形核效率提升至1/80。此外,板材的伸长率也随着升温速率的提高而增大,在773K/8×10-4s-1的变形条件下,试样的伸长率从100%提高至730%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈敏
叶凌英
孙大翔
杨涛
王国玮
张新明
关键词 铝合金形变热处理升温速率晶粒尺寸超塑性    
Abstract

Fine-grained 7B04 aluminum alloy sheets were manufactured through thermo-mechanical treatment. The effects of anneal heating rate on grain structure and superplasticity were investigated using electron back scattering diffraction (EBSD) and high temperature tensile test. The results show that at the heating rate of 5.0×10-3K/s, the average grain sizes along the rolling direction (RD) and normal direction (ND) are 28.2μm and 13.9μm respectively, the nucleation rate is 1/1000. With the increase of heating rate, the average grain size decreases, and the nucleation rate increases. When the heating rate increases to 30.0K/s, the average grain sizes along the RD and ND decrease respectively to 9.9μm and 5.1μm, and the nucleation rate increases to 1/80. Besides, with the increase of heating rate, the elongation of sheets also increases. The elongation of the specimens increases from 100% to 730% under the deforming condition of 773K/8×10-4s-1.

Key wordsaluminium alloy    thermo-mechanical treatment    heating rate    grain size    superplasticity
收稿日期: 2015-07-29      出版日期: 2017-03-22
中图分类号:  TG166.3  
基金资助:国家自然科学基金资助项目(51205419)
通讯作者: 叶凌英     E-mail: yelingying_1981@163.com
作者简介: 叶凌英 (1981-), 男, 副教授, 博士, 现从事铝合金超塑性相关研究, 联系地址:湖南省长沙市岳麓区中南大学本部特冶楼215(410083), E-mail:yelingying_1981@163.com
引用本文:   
陈敏, 叶凌英, 孙大翔, 杨涛, 王国玮, 张新明. 升温速率对7B04铝合金板材晶粒组织和超塑性的影响[J]. 材料工程, 2017, 45(3): 112-118.
Min CHEN, Ling-ying YE, Da-xiang SUN, Tao YANG, Guo-wei WANG, Xin-ming ZHANG. Effect of Heating Rate on Grain Structure and Superplasticity of 7B04 Aluminum Alloy Sheets. Journal of Materials Engineering, 2017, 45(3): 112-118.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000850      或      http://jme.biam.ac.cn/CN/Y2017/V45/I3/112
Fig.1  高温拉伸试样图 (mm)
Fig.2  不同升温速率7B04铝合金过程再结晶退火的EBSD取向图 (753K/30min)
(a)5.0×10-3K/s; (b)2.7×10-2K/s; (c)1.3K/s; (d)30.0K/s
Heating rate/(K·s-1) dRD/μm dND/μm dRD/ dND
5.0×10-3 28.2 13.9 2.03
2.7×10-2 24.1 9.6 2.51
1.3 19.1 6.6 2.89
30.0 9.9 5.1 1.94
Table 1  7B04板材不同升温速率退火后平均晶粒尺寸 (753K/30min)
Fig.3  再结晶退火过程中不同升温速率材料的晶粒取向差分布图 (753K/30min)
(a)5.0×10-3K/s; (b)2.7×10-2K/s; (c)1.3K/s; (d)30.0K/s
Fig.4  7B04铝合金再结晶晶粒平均尺寸${\bar d}$和晶粒密度nv与升温速率之间的关系
Fig.5  升温速率板材在不同温度和初始应变速率条件下对应的伸长率 (a)773K;(b)803K
Fig.6  变形温度为773K,初始应变速率为8×10-4s-1时不同升温速率试样真应力-真应变曲线
Fig.7  变形温度为773K,初始应变速率为8×10-4s-1时不同升温速率7B04铝合金高温拉伸后宏观照片
1 王建国, 王祝堂. 航空航天变形铝合金的进展 (1)[J]. 轻合金加工技术, 2013, 41 (8): 1- 6.
1 WANG J G , WANG Z T . The progress of the deformation of aerospace aluminum alloy (1)[J]. Light Alloy Fabrication Technology, 2013, 41 (8): 1- 6.
2 楼瑞祥. 大飞机铝合金现状与发展趋势[C]//中国航空学会2007年学术年会. 深圳: 中国航空学会、中国工程院机械与运载工程学部, 2007.
2 LOU R X. The present situation and development trend of aluminum alloy for large aircraft[C]//Chinese Society of Aeronautics and Astronautics 2007 Annual Conference. Shenzhen:Chinese Society of Aeronautics and Astronautics Department of Mechanical and Transportation Engineering of Chinese Academy of Engineering, 2007.
3 LIU F C , XUE P , MA Z Y . Microstructural evolution in recrystallized and unrecrystallized Al-Mg-Sc alloys during superplastic deformation[J]. Materials Science and Engineering:A, 2012, 547, 55- 63.
doi: 10.1016/j.msea.2012.03.076
4 HUMPHREYS F J , HATHERLY M . Recystallization and related annealing phenomena[M]. 2 ed Oxford: Pergamon Press, 2004.
5 张新明, 叶凌英, 杜予晅, 等. 01420铝锂合金的粒子激发再结晶形核[J]. 中南大学学报, 2007, 38 (1): 19- 23.
5 ZHANG X M , YE L Y , DU Y X , et al. Particle stimulated nucleation of recrystallization in 01420 Al-Li alloy[J]. Joural of Central South University, 2007, 38 (1): 19- 23.
6 HA T K , SUNG H J , KIM K S , et al. An internal variable approach to the grain size effect on the superplastic deformation behavior of a 7475 Al alloy[J]. Materials Science and Engineering:A, 1999, 271 (1-2): 160- 166.
doi: 10.1016/S0921-5093(99)00224-5
7 WERT J A , PATON N E , HAMILTON C H , et al. Grain refinement in 7075 Aluminum by thermo-mechanical processing[J]. Metall Trans:A, 1981, 12 (7): 1267- 1276.
doi: 10.1007/BF02642340
8 BAMRTON C C , WERT J A , MAHONEY M W . Heating rate effects on recrystallized grain size in two Al-Zn-Mg-Cu alloys[J]. Metallurgical Transcations:A, 1982, 13, 193- 197.
9 WANG K , LIU F C , MA Z Y , et al. Realization of exceptionally high elongation at high strain rate in a friction stir processed Al-Zn-Mg-Cu alloy with the presence of liquid phase[J]. Scripta Materialia, 2011, 64, 572- 575.
doi: 10.1016/j.scriptamat.2010.11.050
10 ZHOU M , DENG J , JIANG Y Q , et al. Hot tensile deformation behaviors and constitutive model of an Al-Zn-Mg-Cu alloy[J]. Materials & Design, 2014, 59, 141- 150.
11 TAHERY-MANDARJANI M , ZAREI-HANZAKI A , ABEDI H R . Hot ductility behavior of an extruded 7075 aluminum alloy[J]. Materials Science and Engineering:A, 2015, 637, 107- 122.
doi: 10.1016/j.msea.2015.03.038
12 LANG Y J , CUI H , CAI Y H , et al. Effect of strain-modified particles on the formation of fined grains and the properties of AA7050 alloy[J]. Materials & Design, 2012, 39, 220- 225.
13 张新明, 邓运来, 张勇, 等. 高强铝合金的发展及其材料的制备加工技术[J]. 金属学报, 2015, 51 (3): 257- 271.
13 ZHANG X M , DEGN Y L , ZHANG Y , et al. Development of high strength aluminum and processing techniques for the materials[J]. Acta Metallurgica Sinica, 2015, 51 (3): 257- 271.
14 王建国, 王祝堂. 航空航天变形铝合金的进展 (3)[J]. 轻合金加工技术, 2013, 41 (10): 1- 14.
14 WANG J G , WANG Z T . The progress of the deformation of aerospace aluminum Alloy[J]. Light Alloy Fabrication Technology, 2013, 41 (10): 1- 14.
15 蹇海根. 时效制度对7B04铝合金组织与性能的影响[D]. 长沙: 中南大学, 2004.
15 JIAN H G. The effect of aging on microstruture and properties of 7B04 aluminum alloy[D]. Changsha:Central South University, 2004.
16 蹇海根. 固溶处理对7B04铝合金组织和性能的影响[J]. 材料热处理学报, 2007, 28 (3): 72- 76.
16 JIAN H G . Solution treatment on the microstructure and mechanical properties of 7B04 aluminum alloy[J]. Transactions of Metal Heat Treatment, 2007, 28 (3): 72- 76.
17 宁爱林, 曾苏民. 时效制度对7B04铝合金组织和性能的影响[J]. 中国有色金属学报, 2004, 14 (6): 922- 927.
17 NING A L , ZENG S M . The effects of aging system on microstructure and property of 7B04 alloy[J]. The Chinese Journal of Nonferrous Metals, 2004, 14 (6): 922- 927.
18 李志辉, 熊柏青. 时效制度对7B04高强铝合金力学及腐蚀性能的影响[J]. 稀有金属, 2008, 32 (6): 794- 798.
18 LI Z H , XIONG B Q . The effects of aging system on microstructure and property of 7B04 high strength aluminum alloy[J]. Rare Metal Material and Engineering, 2008, 32 (6): 794- 798.
19 DOHERTY R D , HUGHES D A , HUMPHREYS F J , et al. Current issues in recrystallization:a review[J]. Materials Science and Engineering:A, 1997, 238 (2): 219- 274.
doi: 10.1016/S0921-5093(97)00424-3
20 叶凌英. 细晶铝锂合金板材的制备原理技术及超塑性变形行为[D]. 长沙: 中南大学, 2010.
20 YE L Y. Preparation technology and superplastic deformation behavior of fine-grained Al-Li alloy sheet[D].Changsha:Central South University, 2010.
21 丁桦, 张凯峰. 材料超塑性研究的现状与发展[J]. 中国有色金属学报, 2004, 14 (7): 1059- 1067.
21 DING H , ZHANG K F . The present Situation of the superplastic materials research and development[J]. The Chinese Journal of Nonferrous Metals, 2004, 14 (7): 1059- 1067.
[1] 刘小辉, 刘允中. 激光选区熔化成形高强铝合金晶粒细化抑制裂纹研究现状[J]. 材料工程, 2022, 50(8): 1-16.
[2] 潘士伟, 王自东, 陈晓华, 王艳林, 陈凯旋, 朱谕至. 锆微合金化增强铝合金的研究进展[J]. 材料工程, 2022, 50(8): 17-33.
[3] 金士杰, 田鑫, 林莉. 铝合金搅拌摩擦焊超声检测研究进展[J]. 材料工程, 2022, 50(8): 45-59.
[4] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[5] 王付胜, 孔繁淇, 王文平, 陈亚军. 航空铝合金原位腐蚀疲劳性能及断裂机理[J]. 材料工程, 2022, 50(6): 149-156.
[6] 韩启飞, 符瑞, 胡锦龙, 郭跃岭, 韩亚峰, 王俊升, 纪涛, 卢继平, 刘长猛. 电弧熔丝增材制造铝合金研究进展[J]. 材料工程, 2022, 50(4): 62-73.
[7] 余晖, 任军超, 杨鑫, 郭舒龙, 余炜, 冯建航, 殷福星, 辛光善. Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究[J]. 材料工程, 2022, 50(3): 157-165.
[8] 李红, 闫维嘉, 张禹, 杜文博, 栗卓新, MARIUSZBober, SENKARAJacek. 先进航空材料焊接过程热裂纹研究进展[J]. 材料工程, 2022, 50(2): 50-61.
[9] 陈高红, 张月, 李应权, 刘建华, 于美. 缓蚀剂组合的容器负载方式对铝合金涂层耐蚀性能的影响[J]. 材料工程, 2022, 50(2): 153-163.
[10] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[11] 王浩, 肖纳敏, 李惠曲, 王晓. 7050铝合金结构件热处理与冷成形过程残余应力演化规律的数值模拟[J]. 材料工程, 2021, 49(8): 72-80.
[12] 陈海燕, 曾越, 李艺, 吴建新, 许世锬, 邹燕成. 基于非线性超声空化效应的铝合金热浸镀工艺[J]. 材料工程, 2021, 49(7): 133-140.
[13] 詹强坤, 刘允中, 刘小辉, 周志光. 激光选区熔化成形含锆7××× 系铝合金的显微组织与力学性能[J]. 材料工程, 2021, 49(6): 85-93.
[14] 于娟, 陆政, 鲁原, 熊艳才, 李国爱, 冯朝辉, 郝时嘉. 中间形变热处理对2A97铝锂合金组织和性能的影响[J]. 材料工程, 2021, 49(5): 130-136.
[15] 臧金鑫, 邢清源, 陈军洲, 戴圣龙. 800 MPa级超高强度铝合金的时效析出行为[J]. 材料工程, 2021, 49(4): 71-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn