Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (12): 65-70    DOI: 10.11868/j.issn.1001-4381.2015.000861
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
三维五向编织复合材料低速冲击及冲击后压缩性能实验研究
严实(), 郭留雨, 赵金阳, 陆夏美, 曾涛
哈尔滨理工大学 建筑工程学院, 哈尔滨 150080
Experimental Investigation on Low-velocity Impact and Compression After Impact Properties of Three-dimensional Five-directional Braided Composites
Shi YAN(), Liu-yu GUO, Jin-yang ZHAO, Xia-mei LU, Tao ZENG
School of Architecture and Civil Engineering, Harbin University of Science and Technology, Harbin 150080, China
全文: PDF(3491 KB)   HTML ( 21 )  
输出: BibTeX | EndNote (RIS)      
摘要 

通过实验研究三维五向碳纤维/环氧树脂编织复合材料低速冲击及其冲击后压缩(CAI)性能。测试试件虽然有不同的编织角度,但承受相同的冲击能力。采用冲击后压缩测试表征不同编织结构的冲击后剩余力学性能。结果表明:编织角较大的试件由于其更紧密的空间结构,能承受更高的冲击载荷且冲击损伤区域更小。CAI强度和损伤机理主要取决于编织纤维束的轴向支撑。随着编织角的增加,CAI强度降低,材料的破坏模式也由横向断裂转变为剪切破坏。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
严实
郭留雨
赵金阳
陆夏美
曾涛
关键词 三维五向编织复合材料低速冲击冲击后压缩损伤机理    
Abstract

The low-velocity impact and compression after impact (CAI) properties of three-dimensional (3D) five-directional carbon fiber/epoxy resin braided composites were experimentally investigated. Specimens prepared with different braiding angles were tested at the same impact energy level. Residual post-impact mechanical properties of the different configurations were characterized by compression after impact tests. Results show that the specimens with bigger braiding angle sustain higher peak loads, and smaller impact damage area, mainly attributes to a more compact space construction. The CAI strength and damage mechanism are found to be mainly dependent on the axial support of the braiding fiber tows. With the increase of braiding angle, the CAI strength decreases, and the damage mode of the composites is changed from transverse fracture to shear failure.

Key words3D five-directional    braided composite    low-velocity impact    CAI    damage mechanism
收稿日期: 2015-07-13      出版日期: 2017-12-19
中图分类号:  TB332  
基金资助:国家自然科学基金项目(11102055);国家自然科学基金项目(11272110)
通讯作者: 严实     E-mail: yanshi@hrbust.edu.cn
作者简介: 严实(1977-), 男, 博士, 副教授, 从事复合材料性能表征研究, 联系地址:黑龙江省哈尔滨市学府路52号哈尔滨理工大学建筑工程学院421室(150080), E-mail:yanshi@hrbust.edu.cn
引用本文:   
严实, 郭留雨, 赵金阳, 陆夏美, 曾涛. 三维五向编织复合材料低速冲击及冲击后压缩性能实验研究[J]. 材料工程, 2017, 45(12): 65-70.
Shi YAN, Liu-yu GUO, Jin-yang ZHAO, Xia-mei LU, Tao ZENG. Experimental Investigation on Low-velocity Impact and Compression After Impact Properties of Three-dimensional Five-directional Braided Composites. Journal of Materials Engineering, 2017, 45(12): 65-70.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000861      或      http://jme.biam.ac.cn/CN/Y2017/V45/I12/65
Fig.1  Instron 9250HV型落锤试验机
Fig.2  三维五向编织复合材料冲击示意图
Material Volume fraction of fiber/% Braiding angle/
(°)
5D15 58.1 15
5D25 58.4 25
5D35 57.9 35
Table 1  材料编号及参数
Material Modulus/GPa μ12
E11 E22 G12 G23
TDE-86 resin 3.45 3.45 0.35
T700-12K fiber 215.60 17.21 12.92 9.30 0.30
Table 2  基体及碳纤维的性能
Type Braided angle/(°) Impact energy/J Absorbed energy/J Peak load/kN Maximum displacement/mm
5D15-1 15 28.67 26.85 8.52 4.77
5D15-2 15 29.38 27.16 9.74 4.41
5D15-3 15 28.78 27.09 8.90 4.47
5D25-1 25 28.70 26.85 9.14 4.61
5D25-2 25 29.08 27.13 10.16 4.20
5D25-3 25 29.01 27.72 9.37 4.72
5D35-1 35 28.85 27.15 9.45 4.40
5D35-2 35 28.68 26.82 10.85 3.95
5D35-3 35 29.23 27.75 9.79 4.49
Table 3  三维编织复合材料试件冲击数据
Type Impact energy/J Absorbed energy/J Peak load/kN Maximum displacement/mm
Average Variance Average Variance Average Variance Average Variance
5D15 28.94 0.146 27.03 0.026 9.05 0.389 4.55 0.037
5D25 28.93 0.040 27.23 0.197 9.56 0.286 4.51 0.075
5D35 28.92 0.079 27.24 0.222 10.03 0.533 4.28 0.083
Table 4  三维编织复合材料冲击参数的平均值与方差
Sample 5D15 5D25 5D35
Maximum load/
kN
Failure displacement/mm Maximum load/kN Failure displacement/mm Maximum load/kN Failure displacement/mm
1 92.9 1.18 87.4 1.35 77.9 1.48
2 93.3 1.21 89.7 1.34 81.2 1.55
3 91.8 1.36 85.7 1.41 81.1 1.52
Average 92.6 1.25 87.6 1.37 80.1 1.52
Variance 0.603 0.0093 4.03 0.0014 3.52 0.0012
Table 5  三维编织复合材料冲击后压缩数据
Fig.3  30J冲击时载荷和能量与时间曲线
Fig.4  30J冲击时载荷-位移曲线
Fig.5  试件冲击损伤照片 (a)15°试件正面;(b)15°试件背面;(c)25°试件正面;(d)25°试件背面;(e)35°试件正面;(f)35°试件背面
Fig.6  CAI测试装置
Fig.7  CAI载荷-位移曲线
Fig.8  三维编织复合材料CAI强度
Fig.9  CAI试件典型破坏模式 (a)15°试件正面;(b)15°试件侧面;(c)25°试件正面;(d)25°试件侧面;(e)35°试件正面;(f)35°试件侧面
1 董慧民, 安学锋, 益小苏, 等. 纤维增强聚合物基复合材料低速冲击研究进展[J]. 材料工程, 2015, 43 (5): 89- 100.
1 DONG H M , AN X F , YI X S , et al. Progress in research on low velocity impact properties of fibre reinforced polymer matrix composite[J]. Journal of Materials Engineering, 2015, 43 (5): 89- 100.
2 王欢, 李嘉禄, 樊威. 纤维体积分数对三维编织复合材料T型梁模态性能的影响[J]. 材料工程, 2015, 43 (9): 80- 86.
2 WANG H , LI J L , FAN W . Effect of fiber volume fraction on modal properties of three-dimension braided composite T-beams[J]. Journal of Materials Engineering, 2015, 43 (9): 80- 86.
3 LI D S , LU Z X , CHEN L , et al. Microstructure and mechanical properties of three-dimensional five-directional braided composites[J]. International Journal of Solids and Structures, 2009, 46 (18/19): 3422- 3432.
4 徐焜, 许希武. 三维五向编织复合材料渐进损伤分析及强度预测[J]. 固体力学学报, 2010, 31 (2): 133- 141.
4 XU K , XU X W . Progressive damage analysis and strength prediction of 3D five-directional braided composites[J]. Chinese Journal of Solid Mechanics, 2010, 31 (2): 133- 141.
5 卢子兴, 王成禹, 夏彪. 含界面相三维全五向编织复合材料拉伸行为模拟及失效机制研究[J]. 复合材料学报, 2014, 31 (1): 179- 186.
5 LU Z X , WANG C Y , XIA B . Failure mechanisms analysis and simulation of tensile mechanical behaviors of 3D full five-directional braided composites with interface phase[J]. Acta Materiae Compositae Sinica, 2014, 31 (1): 179- 186.
6 石晓朋, 李曙林, 常飞, 等. 复合材料加筋壁板低速冲击响应与冲击能量关系[J]. 材料工程, 2015, 43 (4): 53- 58.
6 SHI X P , LI S L , CHANG F , et al. Connection of low-velocity impact response and impact energy of stiffened composite panel[J]. Journal of Materials Engineering, 2015, 43 (4): 53- 58.
7 MATEMILOLA S A, STRONG W J. Impact micro-damage in rein transfer moulded carbon fiber composites plate[C]//Impact and Dynamic Fracture of Polymers and Composites. ESIS 19. London:Mechanical Engineering Publications, 1995:371-381.
8 FUKUTA K . Three-dimensional braided composite material[J]. Journal of the Japan Society for Composite Materials, 1995, 21 (2): 51- 60.
9 ZENG T , FANG D N , LU T J . Dynamic crashing and impact energy absorption of 3D braided composite tubes[J]. Materials Letters, 2005, 59 (12): 1491- 1496.
doi: 10.1016/j.matlet.2005.01.007
10 GU B H , XU J Y . Finite element calculation of 4-step 3-dimensional braided composite under ballistic perforation[J]. Composites:Part B, 2004, 35 (4): 291- 297.
doi: 10.1016/j.compositesb.2004.01.001
11 ZHANG Y , SUN B Z , GU B H . Experimental characterization of transverse impact behaviors of four-step 3-D rectangular braided composites[J]. Journal of Composite Materials, 2012, 46 (24): 3017- 3029.
doi: 10.1177/0021998311435531
12 SUN B Z , ZHANG Y , GU B H . Low-velocity impact response and finite element analysis of four-step 3-D braided composite[J]. Applied Composite Materials, 2013, 20 (4): 397- 413.
doi: 10.1007/s10443-012-9279-2
13 郑海燕, 刘元镛, 郭伟国. 编织型复合材料的冲击及冲击后压缩强度的试验研究[J]. 航空材料学报, 2002, 22 (3): 33- 37.
13 ZHENG H Y , LIU Y Y , GUO W G . The experimental research of impact and CAI of woven composite[J]. Journal of Aeronautical Materials, 2002, 22 (3): 33- 37.
14 杨灵敏, 焦亚男, 高华斌. 三维编织复合材料低速冲击试验与分析[J]. 纺织学报, 2009, 30 (5): 63- 67.
14 YANG L M , JIAO Y N , GAO H B . Low-velocity impact experiment and analysis of 3-D braided composites[J]. Journal of Textile Research, 2009, 30 (5): 63- 67.
15 李明, 周光明, 王新峰. 2.5D机织复合材料冲击后剩余强度研究[J]. 材料工程, 2009, (增刊2): 307- 311.
15 LI M , ZHOU G M , WANG X F . Study on the post-impact strength of 2.5D woven composites[J]. Journal of Materials Engineering, 2009, (Suppl 2): 307- 311.
16 皇甫劭炜, 童小燕, 姚磊江. 编织型复合材料低速冲击损伤及剩余压缩强度研究[J]. 机械设计与制造, 2009, (3): 120- 122.
16 HUANGFU S W , TONG X Y , YAO L J . Research on low velocity impact damage and residual compressive strength of woven composites[J]. Machinery Design & Manufacture, 2009, (3): 120- 122.
17 胡靖元, 陈利阳, 齐风华, 等. 编织复合材料低速冲击响应与破坏模式分析[J]. 工程与试验, 2013, 53 (2): 8- 11.
17 HU J Y , CHEN L Y , QI F H , et al. Research on low velocity impact response and failure modes of woven fabric composite[J]. Engineering & Test, 2013, 53 (2): 8- 11.
18 严实, 赵金阳, 陆夏美, 等. 基于声发射技术的三维编织复合材料低速冲击损伤分析[J]. 材料工程, 2014, (7): 92- 97.
18 YAN S , ZHAO J Y , LU X M , et al. Low-velocity impact response of 3D braided composites by acoustic emission[J]. Journal of Materials Engineering, 2014, (7): 92- 97.
[1] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[2] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[3] 张芳芳, 段永川, 高安娜, 姚丹. 基于耦合法的二维三轴编织复合材料热学性能预测及验证[J]. 材料工程, 2020, 48(4): 151-157.
[4] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[5] 许善迎, 谭焕成, 关玉璞, 刘璐璐. 三维四向编织复合材料力学性能预测及实验验证[J]. 材料工程, 2018, 46(6): 132-140.
[6] 严实, 赵金阳, 陆夏美, 曾涛. 基于声发射技术的三维编织复合材料低速冲击损伤分析[J]. 材料工程, 2014, 0(7): 92-97.
[7] 裴晓园, 李嘉禄, 何玉强. 纤维取向对三维四向编织复合材料与层合复合材料振动性能的影响[J]. 材料工程, 2013, 0(7): 16-23.
[8] 李国禄, 张志强, 王海斗, 徐滨士, 朴钟宇. 涂层疲劳损伤声发射特征参数及损伤机理[J]. 材料工程, 2013, 0(6): 45-49,71.
[9] 严实, 李冬华, 泮世东, 冯吉才. 基于声发射技术的三维编织复合材料压缩破坏分析[J]. 材料工程, 2013, (2): 22-28.
[10] 康克家, 杜三明, 张永振, 赵飞. 高速摆动条件下PTFE编织复合材料干摩擦热行为研究[J]. 材料工程, 2011, 0(11): 15-17,22.
[11] 温卫东, 徐颖, 崔海坡. 低速冲击下复合材料层合板损伤分析[J]. 材料工程, 2007, 0(7): 6-11.
[12] 严实, 吴林志, 孙雨果. 三维四向编织复合材料压缩力学性能实验研究[J]. 材料工程, 2007, 0(7): 59-62,66.
[13] 李小刚, 李宏运, 胡宏军, 唐邦铭, 益小苏. 双马来酰亚胺树脂基二维编织复合材料结构件性能研究[J]. 材料工程, 2005, 0(8): 51-52,58.
[14] 程小全, 寇长河, 郦正能. 缝合复合材料可用性——环境条件下层合板的冲击后压缩性能[J]. 材料工程, 2004, 0(9): 38-41.
[15] 李小刚, 李宏运, 胡宏军, 益小苏. BMI树脂RTM成型工艺性及其编织复合材料性能研究[J]. 材料工程, 2004, 0(9): 52-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn