Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (7): 77-83    DOI: 10.11868/j.issn.1001-4381.2015.000941
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
聚二苯基二苯乙炔基硅烷树脂的制备与非等温热分解
谭德新1,*(), 徐远1, 王艳丽2, 疏瑞文1, 邢宏龙1
1 安徽理工大学 化学工程学院, 安徽 淮南 232001
2 安徽理工大学 材料科学与工程学院, 安徽 淮南 232001
Synthesis and Non-isothermal Thermal Decomposition of Polydiphenyl(diphenylethynyl)Silane
De-xin TAN1,*(), Yuan XU1, Yan-li WANG2, Rui-wen SHU1, Hong-long XING1
1 School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China
2 School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China
全文: PDF(2377 KB)   HTML ( 10 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以溴乙烷、二苯基二氯硅烷、苯乙炔为原料,通过格利雅反应合成二苯基二苯乙炔基硅烷单体(DPDPES),利用FTIR和1H-NMR对单体分子结构进行表征。采用热聚合方法制备了聚二苯基二苯乙炔基硅烷树脂(PDPDPES),借助TG-DTG技术研究了PDPDPES的非等温热分解过程,运用模型法对热分解过程进行分析,建立动力学函数,推导出热分解机理,并应用非模型法对热分解机理函数进行验证。实验结果表明,6种分析方法得到的热分解活化能Ea= 245.37kJ/mol,指前因子lgA=13.78s-1,机理函数式:

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭德新
徐远
王艳丽
疏瑞文
邢宏龙
关键词 聚二苯基二苯乙炔基硅烷树脂模型法非模型法热分解机理    
Abstract

Diphenyldiphenylethynylsilane monomer (DPDPES) was synthesized with ethyl bromide, diphenyldichlorosilane and phenylacetylene by Grignard reaction. The molecular structure was characterized by FTIR and 1H-NMR spectroscopy. The polymer of polydiphenyl(diphenylethynyl)silane (PDPDPES) was also prepared by thermal polymerization. Non-isothermal thermal decomposition process of PDPDPES was studied with TG-DTG technology via model method to get thermal decomposition function and the corresponding mechanism which was further verified by model-free method. Results show that the apparent activation energy and the pre-exponential factor are about Ea=245.37kJ/mol and lgA=13.78s-1 obtained by six different kinetic methods, respectively. The mechanism of functions are .

Key wordspolydiphenyl(diphenylethynyl)silane    model method    model-free method    thermal decomposition mechanism
收稿日期: 2015-07-30      出版日期: 2017-07-21
中图分类号:  O631  
基金资助:国家自然科学基金(51477002);国家自然科学基金(51303005);安徽省高校自然科学基金重点项目(KJ2013A087);安徽省高校自然科学基金重点项目(KJ2013A095)
通讯作者: 谭德新     E-mail: tdxin@163.com
作者简介: 谭德新(1977-), 男, 副教授, 硕士生导师, 博士, 功能高分子的合成与复合材料, 联系地址:广东省湛江市赤坎区寸金路29号岭南师范学院化学化工学院(524048), E-mail:tdxin@163.com
引用本文:   
谭德新, 徐远, 王艳丽, 疏瑞文, 邢宏龙. 聚二苯基二苯乙炔基硅烷树脂的制备与非等温热分解[J]. 材料工程, 2017, 45(7): 77-83.
De-xin TAN, Yuan XU, Yan-li WANG, Rui-wen SHU, Hong-long XING. Synthesis and Non-isothermal Thermal Decomposition of Polydiphenyl(diphenylethynyl)Silane. Journal of Materials Engineering, 2017, 45(7): 77-83.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000941      或      http://jme.biam.ac.cn/CN/Y2017/V45/I7/77
Fig.1  单体DPDPES的合成示意图
Fig.2  单体DPDPES固化温度程序
Fig.3  单体DPDPES的FT-IR谱图
Fig.4  单体DPDPES的1H-NMR谱图
Fig.5  PDPDPES在不同升温速率下的TG-DTG曲线
β/(℃·min-1) Tp/℃ Char yield/%
10 593 80.99
15 599 76.15
20 603 76.09
25 609 74.28
30 614 66.47
Table 1  不同升温速率下最大分解温度及残炭率
Fig.6  PDPDPES的Kissinger法ln(β/Tp2) -Tp-1
Fig.7  PDPDPES的Ozawa法lgβ-Tp-1
α E/(kJ·mol-1) r2
0.05 46.73 -0.0808
0.10 9.38 -0.3291
0.15 29.89 -0.3174
0.20 232.96 0.1816
0.25 266.75 0.6008
0.30 287.70 0.7973
0.35 299.66 0.9527
0.40 294.06 0.9709
0.45 284.03 0.9917
0.50 282.99 0.9840
0.55 255.34 0.9835
0.60 259.83 0.9927
0.65 251.40 0.9905
0.70 258.07 0.9930
0.75 230.47 0.9972
0.80 226.27 0.9811
0.80 226.27 0.9811
0.85 212.27 0.9792
0.90 193.35 0.9811
0.95 172.33 0.9774
Table 2  Ozawa法得到的热分解动力学参数
Method Mechanism E/(kJ·mol-1) lgA r2
Coast-Redfern4 173.38 9.02 0.9960
6 189.02 9.73 0.9988
9 265.31 14.83 0.9881
17 164.78 9.34 0.9974
18 224.37 13.06 0.9974
44 260.13 15.27 0.9994
Achar4 159.80 7.22 0.9629
6 187.22 8.65 0.9855
9 303.96 16.22 0.9842
17 183.51 9.52 0.9906
18 244.16 13.30 0.9941
44 280.56 15.55 0.9951
Table 3  β为10℃/min由Coats-Redfern法和Achar法所得参数
Method β/(℃·min-1) E/(kJ·mol-1) lgA/s-1 r2 |(E0-E)/E0| |(lgA-lgAk)/lgAk|
Coast-Redfern10 260.13 15.27 0.9975 0.0502 0.0300
15 235.81 13.75 0.9924 0.0480 0.0727
20 214.47 12.48 0.9940 0.1341 0.1587
25 212.73 12.40 0.9942 0.1412 0.1639
30 223.25 13.02 0.9969 0.0987 0.1222
Average 229.28 13.38 0.0944 0.1095
Achar10 280.56 16.55 0.9951 0.1327 0.1158
15 252.76 14.81 0.9849 0.0204 0.0012
20 221.79 12.97 0.9934 0.1046 0.1257
25 228.05 13.35 0.9936 0.0793 0.0996
30 234.75 13.74 0.9912 0.0523 0.0734
Average 243.58 14.28 0.0779 0.0831
Table 4  不同升温速率下44号机理函数计算所得参数
Fig.8  DPDPES的Vyazovkin-Wight法ln(β/Tp2)-Tp-1
Fig.9  DPDPES的Tang法ln(β/Tp1.894661)-Tp-1
αVyazovkin-Wight Tang
E/(kJ·mol-1) r2 E/(kJ·mol-1) r2
0.95 165.46 0.9731 165.54 0.9734
0.90 187.86 0.9780 187.82 0.9782
0.85 207.95 0.9762 207.82 0.9764
0.80 222.84 0.9786 222.63 0.9788
0.75 215.92 0.9228 215.74 0.9234
0.70 256.55 0.9922 256.18 0.9922
0.65 249.67 0.9893 249.32 0.9894
0.60 258.66 0.9919 258.26 0.9919
0.55 254.05 0.9816 253.67 0.9817
0.50 268.69 0.9857 268.24 0.9858
0.45 284.48 0.9908 283.95 0.9909
0.40 359.11 0.9645 358.24 0.9647
0.35 321.60 0.9253 320.89 0.9257
Average 250.22 249.87
Table 5  由V-W法、Tang法计算所得到的动力学参数
1 池铁, 齐会民, 黄发荣, 等. 含硅芳炔树脂的热氧化降解动力学研究[J]. 玻璃钢/复合材料, 2013, (2): 34- 38.
1 CHI T , QI H M , HUANG F R , et al. Thermal oxidative degradation kinetics of silicon-arylacetylene-containing resin[J]. Fiber Reinforced Plastics/Composites, 2013, (2): 34- 38.
2 ZHOU Y , HUANG F , DU L , et al. Synthesis and properties of silicon-containing arylacetylene resins with polyhedral oligomeric silsesquioxane[J]. Polymer Engineering & Science, 2015, 55 (2): 316- 321.
3 SHEN Y , YUAN Q , HUANG F , et al. Effect of neutral nickel catalyst on cure process of silicon-containing polyarylacetylene[J]. Thermochimica Acta, 2014, 590, 66- 72.
doi: 10.1016/j.tca.2014.06.002
4 谭德新, 王艳丽, 邢宏龙, 等. 聚苯基三苯乙炔基硅烷的制备及热分解动力学[J]. 固体火箭技术, 2013, 36 (3): 385- 389.
4 TAN D X , WANG Y L , XING H L , et al. Preparation and thermal decomposition kinetics of poly (phenyl (triphenylethynyl) silane)s[J]. Journal of Solid Rocket Technology, 2013, 36 (3): 385- 389.
5 ZHANG J , HUANG J , YU X , et al. Preparation and properties of modified silicon-containing arylacetylene resin with bispropargyl ether[J]. Bull Korean Chem Soc, 2012, 33 (11): 3706- 3710.
doi: 10.5012/bkcs.2012.33.11.3706
6 MAJI A , HAZRA A , MAITI D . Direct synthesis of α-trifluoromethyl ketone from (hetero) arylacetylene: design, intermediate trapping, and mechanistic investigations[J]. Organic Letters, 2014, 16 (17): 4524- 4527.
doi: 10.1021/ol502071g
7 吴永胜, 余若冰, 朱长进, 等. 硅烷改性芳基乙炔固化物的耐热性能[J]. 上海大学学报(自然科学版), 2013, 19 (6): 562- 566.
7 WU Y S , YU R B , ZHU C J , et al. Heat resistance of cured arylacetylene modified by siloxane[J]. Journal of Shanghai University (Natural Science), 2013, 19 (6): 562- 566.
8 宋宁. 含硅、氮、硼元素耐高温芳基乙炔树脂及其复合材料的研究[D]. 上海: 华东理工大学, 2012.
8 SONG N. Study on high-temperature resistant aryl-acetylene resins containing silicon, nitrogen and boron elements and their composites[D]. Shanghai: East China University of Science and Technology, 2012.
9 戴泽亮, 陈麒, 倪礼忠. 双(N-间乙炔基苯基邻苯二甲酰亚胺)醚改性甲基二苯乙炔基硅烷[J]. 复合材料学报, 2005, 22 (5): 89- 93.
9 DAI Z L , CHEN Q , NI L Z . Di-N-m-accetylenephenylphthalimide-ether modifying methyl-di-phenylacetylene-silane[J]. Acta Materiae Compositae Sinica, 2005, 22 (5): 89- 93.
10 颜梅, 江金强, 施伟, 等. 有机硅耐烧蚀材料的研究进展[J]. 有机硅材料, 2001, 15 (2): 24- 27.
10 YAN M , JIANG J Q , SHI W , et al. Research advance of the silicone ablative material[J]. Silicone Material, 2001, 15 (2): 24- 27.
11 刘衍兵, 郭康康, 齐会民, 等. 聚硅烷改性含硅芳炔树脂的耐热性能研究[J]. 化工新型材料, 2010, 38 (4): 84- 88.
11 LIU Y B , GUO K K , QI H M , et al. Thermal stability of blends of polysilane and silicon-containing arylacetylene resin[J]. New Chemical Materials, 2010, 38 (4): 84- 88.
12 KOWNACKI I , ORWAT B , MARCINIEC B , et al. A new and efficient route for the synthesis of alkynyl functionalized silicon derivatives[J]. Tetrahedron Letters, 2014, 55 (2): 548- 550.
doi: 10.1016/j.tetlet.2013.11.103
13 LIU H Q , HARROD J F . Copper (I) chloride catalyzed cross-dehydrocoupling reactions between silanes and ethynyl compounds a new method for the copolymerization of silanes and alkynes[J]. Canadian Journal of Chemistry, 1990, 68 (7): 1100- 1105.
doi: 10.1139/v90-170
14 MAIENTHAL M , HELLMANN M , HABER C P , et al. The preparation of some aryl silanes1[J]. Journal of the American Chemical Society, 1954, 76 (24): 6392- 6393.
doi: 10.1021/ja01653a043
15 ISHIKAWA J , ITOH M . Dehydrogenative coupling between hydrosilanes and alkynes catalyzed by alkoxides, alkylmetals, and metalamides[J]. Journal of Catalysis, 1999, 185 (2): 454- 461.
doi: 10.1006/jcat.1999.2530
16 陈明锋, 周权, 倪礼忠, 等. 含苯乙炔基共轭单体的合成及荧光性能[J]. 高分子材料科学与工程, 2013, 29 (12): 1- 4.
16 CHEN M F , ZHOU Q , NI L Z , et al. Synthesis and fluorescence properties of conjugated monomers containing phenylacetylene[J]. Polymer Materials Science & Engineering, 2013, 29 (12): 1- 4.
17 TAN D , WANG Y , LI Z , et al. Synthesis and cure kinetics of diphenyl (diphenylethynyl) silane monomer[J]. Research on Chemical Intermediates, 2013, 39 (7): 3427- 3440.
doi: 10.1007/s11164-012-0855-8
18 王艳丽, 谭德新, 于峰, 等. 聚苯基三苯乙炔基硅烷树脂的非等温热分解过程研究[J]. 功能材料, 2014, 45 (21): 21040- 21044.
doi: 10.3969/j.issn.1001-9731.2014.21.009
18 WANG Y L , TAN D X , YU F , et al. The non-isothermal thermal decomposition process of poly(phenyltri(phenylethynyl)silane)s[J]. Journal of Functional Materials, 2014, 45 (21): 21040- 21044.
doi: 10.3969/j.issn.1001-9731.2014.21.009
19 SUN Y J , JIANG J C , WANG Y J , et al. Kinetic analysis of biomass and coal mono-pyrolysis as well as co-pyrolysis by Coats-Redfern[J]. Chemistry & Industry of Forest Products, 2014, 34 (5): 8- 14.
20 YAO X D , FANG R N , PANG H J , et al. Preparation and non-isothermal kinetics analysis of N-[(4-bromo-3, 5-difluorine) phenyl] acrylamide[J]. Advanced Materials Research, 2013, 781, 580- 584.
21 BLAINE R L , KISSINGER H E . Homer kissinger and the kissinger equation[J]. Thermochimica Acta, 2012, 540, 1- 6.
doi: 10.1016/j.tca.2012.04.008
22 杭祖圣, 谈玲华, 居法银, 等. 非等温热重分析三聚氰胺热分解动力学[J]. 分析科学学报, 2011, 27 (3): 279- 283.
22 HANG Z S , TAN L H , JU F Y , et al. Non-isothermal kinetic studies on the thermal decomposition of melamine by thermogravimetric analysis[J]. Journal of Analytical Science, 2011, 27 (3): 279- 283.
23 ZHU L , WANG X , WU L , et al. Thermal decomposition properties of cross-linked polycarbonate derived from carbon dioxide, propylene oxide and pyromellitic dianhydride[J]. Materials Letters, 2014, 128, 396- 399.
doi: 10.1016/j.matlet.2014.04.057
24 ZHANG S , SHI H S , HUANG S W , et al. Dehydration characteristics of struvite-K pertaining to magnesium potassium phosphate cement system in non-isothermal condition[J]. Journal of Thermal Analysis and Calorimetry, 2013, 111 (1): 35- 40.
doi: 10.1007/s10973-011-2170-9
25 卢林刚, 韩中凯, 杨守生. 新型无卤阻燃剂双酚S-二(5, 5-二甲基-1, 3-二氧杂己内磷酸酯)的热分解动力学研究[J]. 分子科学学报, 2010, 26 (4): 261- 265.
25 LU L G , HAN Z K , YANG S S . Study on thermal decomposition kinetics of novel halogen-free flame retardant from bisphenol s-bis(5, 5-dimethyl-1, 3-dioxaphosphorinanyl-2-oxy)[J]. Journal of Molecular Science, 2010, 26 (4): 261- 265.
26 胡拥鹏, 赵旭芳, 赵宁宁, 等. DNGTz的非等温热分解动力学及热安全性[J]. 含能材料, 2014, 22 (6): 767- 773.
doi: 10.11943/j.issn.1006-9941.2014.06.011
26 HU Y P , ZHAO X F , ZHAO N N , et al. Non-isothermal thermal decomposition kinetics and thermal safety of DNGTz[J]. Chinese Journal of Energetic Materials, 2014, 22 (6): 767- 773.
doi: 10.11943/j.issn.1006-9941.2014.06.011
27 胡荣祖, 高胜利, 赵凤起, 等. 热分析动力学[M]. 2版 北京: 科学出版社, 2008: 55- 117.
27 HU R Z , GAO S L , ZHAO F Q , et al. Thermal Analysis Kinetics[M]. 2nd ed Beijing: Science Press, 2008: 55- 117.
[1] 李守佳, 罗春燕, 陈卫星, 方铭港, 孙健鑫. 氧化石墨烯接枝聚乙二醇对左旋聚乳酸结晶行为和热稳定性的影响[J]. 材料工程, 2022, 50(8): 99-106.
[2] 林广鸿, 尹敬峰, 黄鸿, 黄伟滨, 蔡慕华, 向洪平, 刘晓暄. 混杂光固化3D打印树脂固化动力学性能[J]. 材料工程, 2019, 47(12): 143-150.
[3] 陈珂龙, 张桐, 崔溢, 王智勇. 超支化聚合物(HBPs)改性环氧树脂的研究进展[J]. 材料工程, 2019, 47(7): 11-18.
[4] 郭妙才, 洪旭辉, 李亚锋. 非均相固化体系对复合材料树脂微观力学均匀性的影响[J]. 材料工程, 2018, 46(10): 142-148.
[5] 王梦梵, 陈旺, 苏世州, 韩旭, 徐樑华, 曹维宇. PAN纤维炭化过程中缺陷结构的温度效应[J]. 材料工程, 2015, 43(6): 66-70.
[6] 张彦飞, 兰艳花, 付一政, 赵贵哲, 胡国胜. PA6/POE共混物的分子动力学与介观动力学模拟[J]. 材料工程, 2013, 0(7): 44-49.
[7] 蔡丹, 王岩, 姜振华, 牟建新. 聚磷腈微纳球的可控化制备及疏水性能研究[J]. 材料工程, 2012, 0(10): 58-62.
[8] 江盛玲, 谷晓昱, 张志远. 聚苯硫醚/羟基改性多壁碳纳米管复合材料动态力学行为研究[J]. 材料工程, 2011, 0(6): 77-80.
[9] 严峡, 龙盛如, 杨杰. 拉伸速率对炭纤维/尼龙6微复合材料微观力学行为的影响[J]. 材料工程, 2010, 0(7): 14-17.
[10] 花兴艳, 赵培仲, 朱金华, 王源升. 聚氨酯/环氧树脂互穿网络硬泡静态压缩塑性变形模式[J]. 材料工程, 2010, 0(4): 26-32.
[11] 花兴艳, 王源升, 赵培仲, 朱金华. 聚氨酯/环氧树脂互穿聚合物网络半硬泡沫的结构与性能[J]. 材料工程, 2009, 0(10): 32-35,40.
[12] 黄大庆, 黄俊, 哈恩华, 刘旸, 吕明云, 丁鹤雁. 聚3,4-乙二氧噻吩包覆碳纳米管的原位化学氧化合成[J]. 材料工程, 2008, 0(5): 13-16.
[13] 梁兴泉, 李克文, 卢发燕, 郑安雄, 宋江选. PEG400存在下聚乙烯膜的光氧化降解特性研究[J]. 材料工程, 2008, 0(1): 14-17.
[14] 王文俊, 李胤, 门爽, 邵自强. 三醋酸纤维素的结构与性能研究[J]. 材料工程, 2007, 0(8): 49-52.
[15] 洪晓斌, 谢凯, 肖加余. 环氧树脂新型有机硅改性剂[J]. 材料工程, 2007, 0(6): 46-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn