Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (8): 14-18    DOI: 10.11868/j.issn.1001-4381.2015.000948
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
溶胶-凝胶法制备xLa-3%In-TiO2光催化材料
曲家惠, 陈金垒, 李红, 张文杰
沈阳理工大学 环境与化学工程学院, 沈阳 110159
xLa-3%In-TiO2 Photocatalytic Material Prepared by Sol-gel Method
QU Jia-hui, CHEN Jin-lei, LI Hong, ZHANG Wen-jie
School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China
全文: PDF(4687 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用溶胶-凝胶法制备xLa-3%(摩尔分数,下同) In-TiO2光催化材料,对其进行XRD,SEM,比表面,孔径分布表征和光催化活性评价。结果表明:所制备的样品为四方晶系锐钛矿结构,掺杂La和In样品的TiO2晶粒尺寸有所减小。In3+,La3+以置换Ti4+的方式进入TiO2晶格中。掺杂La后材料的比表面积增大,平均孔径减小。xLa-3% In-TiO2的孔径主要分布在1.5~10nm范围内。La的掺杂明显提高了材料的光催化活性,甲基橙在0.3% La-3% In-TiO2和3% In-TiO2上的光催化反应速率常数分别为0.061,0.029min-1。甲基橙分子中的显色基团在光催化过程中可以完全降解。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曲家惠
陈金垒
李红
张文杰
关键词 TiO2溶胶-凝胶光催化甲基橙    
Abstract:A sol-gel method was applied to prepare xLa-3%(mole fraction,the same below)In-TiO2 photocatalytic materials,which were characterized by XRD, SEM, surface area, and pore size distribution measures. Photocatalytic activity of the materials was also evaluated. The results show that the materials are in tetragonal anatase structure. Crystalline size of TiO2 decreases after doping La and In. In3+ and La3+ exist in TiO2 crystal lattice by substituting Ti4+. La doping results in enlarging surface area and shrinking pore size. Pore size of xLa-3%In-TiO2 is mainly in the range of 1.5-10nm. Doping of La obviously leads to enhanced photocatalytic activity. Photocatalytic rate constants of methyl orange are 0.061min-1 and 0.029min-1 on 0.3%La-3%In-TiO2 and 3%In-TiO2, respectively. The chromogenic groups in methyl orange molecules can be degraded during photocatalytic process.
Key wordsTiO2    sol-gel    photocatalysis    methyl orange
收稿日期: 2015-08-10      出版日期: 2017-08-10
中图分类号:  O643  
通讯作者: 张文杰(1969-),男,博士,教授,研究方向是环境净化功能材料,联系地址:辽宁省沈阳市浑南新区沈阳理工大学环境与化学工程学院(110159),E-mail:wjzhang@aliyun.com     E-mail: wjzhang@aliyun.com
引用本文:   
曲家惠, 陈金垒, 李红, 张文杰. 溶胶-凝胶法制备xLa-3%In-TiO2光催化材料[J]. 材料工程, 2017, 45(8): 14-18.
QU Jia-hui, CHEN Jin-lei, LI Hong, ZHANG Wen-jie. xLa-3%In-TiO2 Photocatalytic Material Prepared by Sol-gel Method. Journal of Materials Engineering, 2017, 45(8): 14-18.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000948      或      http://jme.biam.ac.cn/CN/Y2017/V45/I8/14
[1] PLANTARD G, JANIN T, GOETZ V, et al. Solar photocatalysis treatment of phytosanitary refuses:efficiency of industrial photocatalysts[J]. Applied Catalysis B:Environmental, 2012, 115-116:38-44.
[2] 陈昱, 王京钰, 李维尊, 等. 新型二氧化钛基光催化材料的研究进展[J]. 材料工程, 2016, 44(3):103-113. CHEN Y, WANG J Y, LI W Z, et al. Research process in TiO2-based photocatalysis material[J]. Journal of Materials Engineering, 2016, 44(3):103-113.
[3] NAKATA K, FUJISHIMA A. TiO2 photocatalysis:design and applications[J]. Journal of Photochemistry and Photobiology C, 2012, 13:169-189.
[4] MARIEN C B D, COTTINEAU T, ROBERT D, et al. TiO2 nanotube arrays:influence of tube length on the photocatalytic degradation of Paraquat[J]. Applied Catalysis B:Environmental, 2016, 194:1-6.
[5] KU Y, SHIU S J, WU H C. Decomposition of dimethyl phthalate in aqueous solution by UV-LED/TiO2 process under periodic illumination[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2017, 332:299-305.
[6] LI H, SHEN X J, LIU Y D, et al. Titanate nanowire as a precursor for facile morphology control of TiO2 catalysts with enhanced photocatalytic activity[J]. Journal of Alloys and Compounds, 2016, 687:927-936.
[7] LING Y, LIAO G, XIE Y, et al. Coupling photocatalysis with ozonation for enhanced degradation of Atenolol by Ag-TiO2 micro-tube[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2016, 329:280-286.
[8] CAVALCANTEA R P, DANTASB R F, BAYARRIC B, et al. Photocatalytic mechanism of metoprolol oxidation by photocatalysts TiO2 and TiO2 doped with 5% B:primary active species and intermediates[J]. Applied Catalysis B:Environmental, 2016, 194:111-122.
[9] HAN C, ANDERSEN J, LIKODIMOS V, et al. The effect of solvent in the sol-gel synthesis of visible light-activated, sulfur-doped TiO2 nanostructured porous films for water treatment[J]. Catalysis Today, 2014, 224:132-139.
[10] LIU J H, YANG R, LI S M. Synthesis and photocatalytic activity of TiO2/V2O5 composite catalyst doped with rare earth ions[J]. Journal of Rare Earths, 2007, 25:173-178.
[11] CHEN L C, HUANG C M, GAO C S, et al. A comparative study of the effects of In2O3 and SnO2 modification on the photocatalytic activity and characteristics of TiO2[J]. Chemical Engineering Journal, 2011, 175:49-55.
[12] WEI H Y, WU Y S, LUN N, et al. Preparation and photocatalysis of TiO2 nanoparticles co-doped with nitrogen and lanthanum[J]. Journal of Materials Science, 2004, 39:1305-1308.
[13] YANG J, DAI J, LI J T. Synthesis, characterization and degradation of Bisphenol A using Pr, N co-doped TiO2 with highly visible light activity[J]. Applied Surface Science, 2011, 257:8965-8973.
[14] PARIDA K M, SAHU N. Visible light induced photocatalytic activity of rare earth titania nanocomposites[J]. Journal of Molecular Catalysis A:Chemical, 2008, 287:151-158.
[15] ZHANG W J, CHEN J L, HE H B. Properties of In-TiO2 photocatalyst as the factors of indium doping content and calcination temperature[J]. Journal of Advanced Oxidation Technologies, 2014, 17(2):365-371.
[16] YUAN S, SHENG Q R, ZHANG J L. Synthesis of La3+ doped mesoporous titania with highly crystallized walls[J]. Microporous and Mesoporous Materials, 2005, 79:93-99.
[17] 陈恩伟, 银董红, 宋慧娟, 等. 镧系离子掺杂TiO2的制备及其对咪唑降解反应的光催化活性[J]. 催化学报, 2006, 27(4):344-348. CHEN E W, YIN D H, SONG H J, et al. Preparation of lanthanide ions-doped TiO2 and its photocatalytic activity for imidazole degradation[J]. Chinese Journal of Catalysis, 2006, 27(4):344-348.
[1] 赵晓华, 魏崇, 苏帅, 崔佳宝, 周建国, 李彩珠, 娄向东. Ag3PO4/ZnO@碳球三元异质结的合成及可见光催化性能[J]. 材料工程, 2019, 47(7): 76-83.
[2] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
[3] 权月, 尹杰, 王园园, 包斯元, 鲁雄, 冯波, 周杰. 暴露高活性晶面的TiO2纳米管的制备及生物活性[J]. 材料工程, 2019, 47(4): 97-104.
[4] 毕松, 汤进, 王鑫, 侯根良, 李军, 刘朝辉, 苏勋家. 共沉淀过程中镍锌添加比例对两步法制备的Ni0.5Zn0.5Fe2O4吸波性能的影响[J]. 材料工程, 2019, 47(4): 91-96.
[5] 刘明, 严继康, 杨钢, 姜贵民, 杜景红, 甘国友, 易健宏. 铜掺杂纳米二氧化钛颗粒的相变研究[J]. 材料工程, 2019, 47(4): 105-112.
[6] 张宇, 刘湘粤, 毛会玲, 王晨, 杜嬛, 程琥, 庄金亮. 铁盐对制备MIL-100(Fe)的影响及其光催化性能[J]. 材料工程, 2019, 47(3): 71-78.
[7] 王娟, 王国宏, 孙玲玲. Ag2CO3/Ag/g-C3N4Z-型异质结的制备及可见光催化降解RhB[J]. 材料工程, 2018, 46(9): 39-45.
[8] 李军, 刘祥萱, 柴云, 刘渊, 张浪浪. MWNTs对MWNTs/Fe2O3光催化性能的影响[J]. 材料工程, 2018, 46(9): 46-52.
[9] 周铁路, 刘会娥, 陈爽, 丁传芹, 齐选良. 诱导助剂对石墨烯负载的TiO2颗粒分布、结构和光催化活性的影响[J]. 材料工程, 2018, 46(8): 43-50.
[10] 王鹏, 张瑞英, 韩小伟, 刘天丽, 杨森. 不同压制压力制备的Al-TiO2-C细化剂对ZL101合金细化效果的影响[J]. 材料工程, 2018, 46(8): 84-90.
[11] 陈义川, 胡跃辉, 胡克艳, 张效华, 童帆, 帅伟强, 劳子轩. 共掺浓度对Na-Al共掺杂ZnO薄膜微观结构和光电性能的影响[J]. 材料工程, 2018, 46(6): 51-56.
[12] 宗志芳, 杨麟, 张浩, 熊磊. 环境协调型Ce-La/TiO2复合材料的制备及光-湿-热性能[J]. 材料工程, 2018, 46(5): 145-150.
[13] 夏永辉, 高强, 王阳毅, 李梦娟. AZO中空纳米纤维的制备及光催化性能[J]. 材料工程, 2018, 46(2): 16-21.
[14] 张曼莉, 邱长军, 蒋艳林, 郑文权, 夏琰. 激光原位合成Al2O3-TiO2复合陶瓷涂层组织结构与性能[J]. 材料工程, 2018, 46(2): 57-65.
[15] 张相辉. La掺杂改性Bi2WO6纳米材料的制备及其光催化性能[J]. 材料工程, 2018, 46(11): 57-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn