Please wait a minute...
材料工程  2017, Vol. 45 Issue (3): 28-34    DOI: 10.11868/j.issn.1001-4381.2015.001011
  石墨烯专栏 本期目录 | 过刊浏览 | 高级检索 |
胡圣飞, 魏文闵, 刘清亭, 张荣
湖北工业大学 绿色轻工材料湖北省重点实验室, 武汉 430068
Research Progress on Preparation of Graphene by Supercritical Fluid Exfoliation
HU Sheng-fei, WEI Wen-min, LIU Qing-ting, ZHANG Rong
Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
全文: PDF(3120 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 石墨烯作为一种新型二维碳纳米材料,具有极好的物理性质和极大的应用潜力。如何大规模制备高质量、低成本的石墨烯是石墨烯产业化的关键问题。本文综述了石墨烯的制备方法及其优缺点,详细介绍了超临界流体剥离制备石墨烯的原理、研究现状及表征方法。讨论了超声波和芘基聚合物辅助超临界流体剥离制备石墨烯法的特点。超临界流体剥离制备石墨烯法设备简单、条件易达到、产品质量高,为石墨烯的工业化生产提供了新的思路。
E-mail Alert
关键词 石墨烯超临界流体制备方法表征    
Abstract:As a new type of two-dimensional carbonaceous material, graphene has excellent physical properties and great application potential. The key problem to realize graphene industrialization is to find a large-scale preparing method of graphene with high quality and low cost. In this paper, the advantages and disadvantages of preparation methods for graphene were first reviewed, and then the mechanism, research status and characterization methods of supercritical fluids exfoliated method were introduced in details. And the features of supercritical fluids exfoliated method with the assistance of ultrasonication and pyrene-polymers were summarized. The advantages of supercritical fluids exfoliated method are simple equipment, processing conditions easy to achieve and products with high quality, and a new way of thinking for the industrial production of graphene is provided.
Key wordsgraphene    supercritical fluid    preparing method    characterization
收稿日期: 2015-08-14      出版日期: 2017-03-22
中图分类号:  O613  
通讯作者: 胡圣飞(1971-),男,教授,博士,主要从事功能高分子复合材料制备与性能研究,联系地址:湖北省武汉市洪山区南李路28号湖北工业大学轻工学部材料学院(430068),     E-mail:
胡圣飞, 魏文闵, 刘清亭, 张荣. 超临界流体剥离制备石墨烯研究进展[J]. 材料工程, 2017, 45(3): 28-34.
HU Sheng-fei, WEI Wen-min, LIU Qing-ting, ZHANG Rong. Research Progress on Preparation of Graphene by Supercritical Fluid Exfoliation. Journal of Materials Engineering, 2017, 45(3): 28-34.
链接本文:      或
[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
[2] KUILLA T, BHADRA S, YAO D, et al. Recent advances in graphene based polymer composites[J]. Progress in Polymer Science, 2010, 35(11):1350-1375.
[3] TIEN H N, LUAN V H, HOA L T, et al. One-pot synthesis of a reduced graphene oxide-zinc oxide sphere composite and its use as a visible light photocatalyst[J]. Chemical Engineering Journal, 2013, 229:126-133.
[4] KUMAR M, SINGH K, DHAWAN S K, et al. Synthesis and characterization of covalently-grafted graphene-polyaniline nanocomposites and its use in a supercapacitor[J]. Chemical Engineering Journal, 2013, 231:397-405.
[5] KUILA T, BOSE S, KHANRA P, et al. Recent advances in graphene-based biosensors[J]. Biosensors & Bioelectronics, 2011, 26(12):4637-4648.
[6] WHITENER K E, SHEEHAN P E. Graphene synthesis[J]. Diamond and Related Materials, 2014, 46:25-34.
[7] CAI M, THORPE D, ADAMSON D H, et al. Methods of graphite exfoliation[J]. Journal of Materials Chemistry, 2012, 22(48):24992-25002.
[8] JIN Z, MCNICHOLAS T P, SHIH C-J, et al. Click chemistry on solution-dispersed graphene and monolayer CVD graphene[J]. Chemistry of Materials, 2011, 23(14):3362-3370.
[9] PU N W, WANG C A, SUNG Y, et al. Production of few-layer graphene by supercritical CO2 exfoliation of graphite[J]. Materials Letters, 2009, 63(23):1987-1989.
[10] 段淼, 李四中, 陈国华. 机械法制备石墨烯的研究进展[J]. 材料工程, 2013, (12):85-91. DUAN M, LI S Z, CHEN G H. Research progress in preparation of graphene by mechanical exfoliation[J]. Journal of Materials Engineering, 2013, (12):85-91.
[11] SIM H S, KIM T A, LEE K H, et al. Preparation of graphene nanosheets through repeated supercritical carbon dioxide process[J]. Materials Letters, 2012, 89:343-346.
[12] 胡玉婷. 在超临界二氧化碳体系中石墨烯剥离技术的研究[D].济南:山东大学, 2014. HU Y T. The study in the exfoliation of graphene in supercritical carbon dioxide system[D]. Jinan:Shandong University, 2014.
[13] 李利花. 超临界二氧化碳辅助石墨烯的制备、功能化及在燃料电池中的应用[D]. 郑州:郑州大学, 2013. LI L H. Preparation and function of graphene with assistance of supercritical carbon dioxide and their application in fuel cells[D]. Zhengzhou:Zhengzhou University, 2013.
[14] WU B, YANG X. A molecular simulation of interactions between graphene nanosheets and supercritical CO2[J]. Journal of Colloid and Interface Science, 2011, 361(1):1-8.
[15] JU S A, KIM K, KIM J H, et al. Graphene-wrapped hybrid spheres of electrical conductivity[J]. ACS Applied Materials & Interfaces, 2011, 3(8):2904-2911.
[16] HERNANDEZ Y, NICOLOSI V, LOTYA M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nat Nano, 2008, 3(9):563-568.
[17] RANGAPPA D, SONE K, WANG M, et al. Rapid and direct conversion of graphite crystals into high-yielding, good-quality graphene by supercritical fluid exfoliation[J]. Chemistry, 2010, 16(22):6488-6494.
[18] LIU C, HU G. Effect of nitric acid treatment on the preparation of graphene sheets by supercritical N,N-dimethylformamide exfoliation[J]. Industrial & Engineering Chemistry Research, 2014, 53(37):14310-14314.
[19] ZHOU Y, BAO Q, TANG L A L, et al. Hydrothermal dehydration for the "Green" reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties[J]. Chemistry of Materials, 2009, 21(13):2950-2956.
[20] LIU C, HU G, GAO H. Preparation of few-layer and single-layer graphene by exfoliation of expandable graphite in supercritical N,N-dimethylformamide[J]. Journal of Supercritical Fluids, 2012, 63:99-104.
[21] TOMAI T, KAWAGUCHI Y, HONMA I. Nanographene production from platelet carbon nanofiber by supercritical fluid exfoliation[J]. Appl Phys lett, 2012, 100:233110.
[22] KNIEKE C, BERGER A, VOIGT M, et al. Scalable production of graphene sheets by mechanical delamination[J]. Carbon, 2010, 48(11):3196-3204.
[23] ZHENG X, XU Q, LI J, et al. High-throughput, direct exfoliation of graphite to graphene via a cooperation of supercritical CO2 and pyrene-polymers[J]. RSC Advances, 2012, 2(28):10632-10638.
[24] MANN J A, RODRIGUEZ-LOPEZ J, ABRUNA H D, et al. Multivalent binding motifs for the noncovalent functionalization of graphene[J]. J Am Chem Soc, 2011, 133(44):17614-17617.
[25] LEE D W, KIM T, LEE M. An amphiphilic pyrene sheet for selective functionalization of graphene[J]. Chemical Communications, 2011, 47(29):8259-8261.
[26] JANG J H, RANGAPPA D, KWON Y U, et al. Direct preparation of 1-PSA modified graphene nanosheets by supercritical fluidic exfoliation and its electrochemical properties[J]. J Mater Chem, 2011, 21(10):3462-3466.
[27] LI L, ZHENG X, WANG J, et al. Solvent-exfoliated and functionalized graphene with assistance of supercritical carbon dioxide[J]. ACS Sustainable Chemistry & Engineering, 2012, 1(1):144-151.
[28] YANG H, HERNANDEZ Y, SCHLIERF A, et al. A simple method for graphene production based on exfoliation of graphite in water using 1-pyrenesulfonic acid sodium salt[J]. Carbon, 2013, 53:357-365.
[29] WANG Y, ZHOU C, WANG W, et al. Preparation of two dimensional atomic crystals BN, WS2, and MoS2 by supercritical CO2 assisted with ultrasound[J]. Industrial & Engineering Chemistry Research, 2013, 52(11):4379-4382.
[30] GAO Y, SHI W, WANG W, et al. Ultrasonic-assisted production of graphene with high yield in supercritical CO2 and its high electrical conductivity film[J]. Industrial & Engineering Chemistry Research, 2014, 53(7):2839-2845.
[31] WANG W, WANG Y, GAO Y, et al. Control of number of graphene layers using ultrasound in supercritical CO2 and their application in lithium-ion batteries[J]. The Journal of Supercritical Fluids, 2014, 85:95-101.
[32] GRAF D, MOLITOR F, ENSSLIN K, et al. Spatially resolved raman spectroscopy of single- and few-layer graphene[J]. Nano Letters, 2007, 7(2):238-242.
[33] GUPTA A, CHEN G, JOSHI P, et al. Raman scattering from high-frequency phonons in supported n-graphene layer films[J]. Nano Letters, 2006, 6(12):2667-2673.
[34] FERRARI A C, MEYER J C, SCARDACI V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006, 97(18):187401.
[35] FERRARI A C, BASKO D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nat Nano, 2013, 8(4):2352-2346.
[36] SALVATIERRA R V, DOMINGUES S H, OLIVEIRA M M, et al. Tri-layer graphene films produced by mechanochemical exfoliation of graphite[J]. Carbon, 2013, 57:410-415.
[37] HERNANDEZ Y, NICOLOSI V, LOTYA M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology, 2008, 3(9):563-568.
[38] BAE S, KIM H, LEE Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nat Nano, 2010, 5(8):574-578.
[39] JOHRA F T, LEE J W, JUNG W G. Facile and safe graphene preparation on solution based platform[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(5):2883-2887.
[40] JIN Z, LOMEDA J R, PRICE B K, et al. Mechanically assisted exfoliation and functionalization of thermally converted graphene sheets[J]. Chemistry of Materials, 2009, 21(14):3045-3047.
[41] STANKOVICH S, DIKIN D A, DOMMETT G H B, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7100):282-286.
[42] 姚雅萱,任玲玲, 高思田, 等. 石墨烯层数测量方法的研究进展[J]. 化学通报, 2015, 78(2):100-106. YAO Y X, REN L L, GAO S T, et al. Progress in measuremental methods for layer numbers of graphene[J]. Chemistry Online, 2015, 78(2):100-106.
[43] LI H, WU J, HUANG X, et al. Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy[J]. ACS Nano, 2013, 7(11):10344-10353.
[44] CHEN K, XUE D. Preparation of colloidal graphene in quantity by electrochemical exfoliation[J]. Journal of Colloid and Interface Science, 2014, 436:41-46.
[45] LIU L, SHEN Z, YI M, et al. A green, rapid and size-controlled production of high-quality graphene sheets by hydrodynamic forces[J]. RSC Advances, 2014, 4(69):36464-36470.
[46] SATHISH M, MITANI S, TOMAI T, et al. Supercritical fluid assisted synthesis of N-doped graphene nanosheets and their capacitance behavior in ionic liquid and aqueous electrolytes[J]. Journal of Materials Chemistry A, 2014, 2(13):4731-4738.
[47] MEYER J C, GEIM A K, KATSNELSON M I, et al. On the roughness of single- and bi-layer graphene membranes[J]. Solid State Communications, 2007, 143(1-2):101-109.
[48] 孙旭东,周明, 秦禄昌. 石墨烯结构与德拜温度因子的电子衍射分析[J]. 电子显微学报, 2013, 32(3):206-210. SUN X D, ZHOU M, QIN L C. Analysis and measurement of structure and Debye-waller factors of graphene by electron diffraction[J]. Journal of Chinese Electron Microscopy Society, 2013, 32(3):206-210.
[49] CHEN W, YAN L, BANGAL P R. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves[J]. Carbon, 2010, 48(4):1146-1152.
[50] YANG Q, PAN X, HUANG F, et al. Fabrication of high-concentration and stable aqueous suspensions of graphene nanosheets by noncovalent functionalization with lignin and cellulose derivatives[J]. Journal of Physical Chemistry C, 2010, 114(9):3811-3816.
[51] LUAN V H, TIEN H N, HUR S H. Fabrication of 3D structured ZnO nanorod/reduced graphene oxide hydrogels and their use for photo-enhanced organic dye removal[J]. Journal of Colloid and Interface Science, 2015, 437:181-186.
[52] DANG D K, KIM E J. Solvothermal-assisted liquid-phase exfoliation of graphite in a mixed solvent of toluene and oleylamine[J]. Nanoscale Research Letters, 2015, 10(6):1-8.
[53] QI X, PU K Y, ZHOU X, et al. Conjugated-polyelectrolyte-functionalized reduced graphene oxide with excellent solubility and stability in polar solvents[J]. Small, 2010, 6(5):663-669.
[1] 王晨, 燕绍九, 南文争, 陈翔. 表面活性剂对高浓度石墨烯水分散液制备的影响[J]. 材料工程, 2019, 47(7): 50-56.
[2] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[3] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[4] 王晨, 燕绍九, 南文争, 王继贤, 彭思侃. 高浓度石墨烯水分散液的制备与表征[J]. 材料工程, 2019, 47(4): 56-63.
[5] 卢子龙, 安立宝, 刘扬. 不同浓度硼掺杂石墨烯吸附多层金原子的第一性原理研究[J]. 材料工程, 2019, 47(4): 64-70.
[6] 李芹, 盛利成, 董丽敏, 张彦飞, 金立国. ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能[J]. 材料工程, 2019, 47(4): 71-76.
[7] 王继刚, 余永志, 邹婧叶, 孟江, 李淑萍, 蒋南. 基于微波辐照合成类石墨烯氮化碳的研究进展[J]. 材料工程, 2019, 47(4): 15-24.
[8] 邹婧叶, 余永志, 顾永攀, 岳夏薇, 孟江, 李淑萍, 王继刚. 高能微波辐照合成类石墨烯氮化碳纳米片的结构特征[J]. 材料工程, 2019, 47(3): 1-7.
[9] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[10] 余煜玺, 夏范森, 黄奇凡. 石墨烯改性PDC-SiCNO陶瓷的制备及其介电性能[J]. 材料工程, 2019, 47(3): 8-14.
[11] 杨宇凯, 张宝, 王旭东, 张虎生, 武岳, 关永军. 石墨烯及碳化硅增强铝基复合材料的冲击力学行为[J]. 材料工程, 2019, 47(3): 15-22.
[12] 张丹丹, 沈洪雷, 曹霞, 叶煜松, 张啸, 叶历, 王梦秋. 石墨烯增强金属基航空复合材料研究进展[J]. 材料工程, 2019, 47(1): 1-10.
[13] 李秀辉, 燕绍九, 洪起虎, 赵双赞, 陈翔. 石墨烯添加量对铜基复合材料性能的影响[J]. 材料工程, 2019, 47(1): 11-17.
[14] 孟祥龙, 衣明东, 肖光春, 陈照强, 许崇海. 石墨烯纳米片增韧Al2O3基纳米复合陶瓷刀具材料[J]. 材料工程, 2019, 47(1): 25-31.
[15] 周铁路, 刘会娥, 陈爽, 丁传芹, 齐选良. 诱导助剂对石墨烯负载的TiO2颗粒分布、结构和光催化活性的影响[J]. 材料工程, 2018, 46(8): 43-50.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持