Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (7): 13-18    DOI: 10.11868/j.issn.1001-4381.2015.001019
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
扭转圈数对高压扭转SiCP/Al复合材料界面扩散行为和组织性能的影响
孙大智, 薛克敏(), 董力源, 李萍
合肥工业大学 材料科学与工程学院, 合肥 230009
Effect of Turning Numbers on SiCP/Al Composites Interface Diffusion Behavior and Microstructure Properties Consolidated by High Pressure Torsion
Da-zhi SUN, Ke-min XUE(), Li-yuan Dong, Ping LI
School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
全文: PDF(2887 KB)   HTML ( 6 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用OM和EDS研究不同扭转圈数下高压扭转法制备SiCP/Al复合材料的显微组织和界面扩散行为,并结合组织特点和界面特征分析扭转圈数对复合材料拉伸性能和断裂机理的影响。结果表明:扭转圈数的增加可以有效提高SiC颗粒分布的均匀性,闭合孔隙,界面处Al元素扩散能力增强,扩散距离增大,Al扩散系数实际计算值较理论值增大了1017倍,形成以元素扩散和界面反应为主的强界面结合,试样抗拉强度和伸长率不断提高,少量的SiC颗粒均匀分布在断口韧窝中,断裂主要以基体的韧性断裂为主;当扭转圈数较大时,SiC颗粒在剧烈剪切作用下破碎加剧,颗粒"再生团聚"导致孔隙率增大,潜在裂纹源增多,形成大量结合强度较低的断裂新生界面,试样抗拉强度和伸长率显著降低,在团聚位置易形成尺寸较大的深坑韧窝,复合材料断裂呈现韧性断裂与脆性断裂的混合模式。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙大智
薛克敏
董力源
李萍
关键词 SiCP/Al复合材料高压扭转界面扩散拉伸性能断口形貌    
Abstract

The microstructure and interface diffusion behaviour of SiCP/Al composites prepared by high-pressure torsion under different turning numbers were investigated by OM and EDS, and the effect of turning numbers on the tensile properties and fracture mechanism was analysed combined with microstructure and interface characteristics. The results show that increasing the turns can improves the uniformity of the particles and reduces the porosity, with the Al diffusion ability enhanced and the diffusion distance increased, and the diffusion coefficient of Al is enhanced by about 1017 times in comparison with the theoretical value, leading to tensile strength and elongation of composites improved continuously and the fracture is mainly based on the ductile fracture of matrix, with a small amount of SiC particles distributed uniformly in the dimple of the fracture. When the turns come to bigger, SiC particles are broken severely by the shearing deformation, particles "regeneration and agglomeration" leads to increased porosity and more potential crack sources, forming a large quantity of new fracture interfaces with low bond strength. The tensile strength and elongation of the sample decrease greatly, and it is easy to form larger deep dimples in the agglomeration, composite fracture exhibits the mixed mode of ductile fracture and brittle fracture.

Key wordsSiCP/Al composite    high-pressure torsion    interface diffusion    tensile property    fractography
收稿日期: 2015-08-15      出版日期: 2017-07-21
中图分类号:  TG146  
  TB331  
基金资助:国家自然科学基金资助项目(51175138)
通讯作者: 薛克敏     E-mail: xuekm0721@sina.com
作者简介: 薛克敏(1963-), 男, 教授, 博士, 主要从事精密塑性成形理论及工艺、成形过程数值模拟、专家系统及人工神经网络等方面研究, 联系地址:安徽省合肥市屯溪路193号合肥工业大学材料学院(230009), E-mail:xuekm0721@sina.com
引用本文:   
孙大智, 薛克敏, 董力源, 李萍. 扭转圈数对高压扭转SiCP/Al复合材料界面扩散行为和组织性能的影响[J]. 材料工程, 2017, 45(7): 13-18.
Da-zhi SUN, Ke-min XUE, Li-yuan Dong, Ping LI. Effect of Turning Numbers on SiCP/Al Composites Interface Diffusion Behavior and Microstructure Properties Consolidated by High Pressure Torsion. Journal of Materials Engineering, 2017, 45(7): 13-18.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001019      或      http://jme.biam.ac.cn/CN/Y2017/V45/I7/13
Fig.1  高压扭转试样
Fig.2  拉伸试样取样示意图
Fig.3  高压扭转试样r=7mm处的显微组织
(a)1圈; (b)2圈; (c)4圈; (d)6圈; (e)8圈
Fig.4  扭转4圈界面处Al,Si分布
Fig.5  界面处Al浓度随扩散距离的变化
Turning number Diffusion distance of Al/μm Theoretical value/10-31 (m2·s-1) Actual calculation/10-13(m2·s-1)
1 2.73 2.42 1.24
2 3.12 2.42 0.81
4 3.81 2.42 0.62
6 4.48 2.42 0.56
8 5.29 2.42 0.58
Table 1  不同扭转圈数下Al元素扩散系数值
Fig.6  扭转8圈界面处Al,Si分布情况
Fig.7  不同扭转圈数下试样室温拉伸性能
Fig.8  高压扭转试样拉伸断口SEM形貌(a)1圈; (b)6圈; (c)8圈
1 陈建, 潘复生, 刘天模. Al/SiC界面结合机制的研究现状[J]. 轻金属, 2000, (9): 52- 54.
1 CHEN J , PAN F S , LIU T M . Present status of study on the interfacial bonding mechanism in the Al/SiC composites[J]. Light Metals, 2000, (9): 52- 54.
2 王文明, 潘复生, 孙旭炜, 等. SiCP/Al复合材料界面反应研究现状[J]. 重庆大学学报, 2004, 27 (3): 108- 113.
2 WANG W M , PAN F S , SUN X W , et al. Advance in research on interfacial reaction in SiCP/Al composites[J]. Journal of Chongqing University, 2004, 27 (3): 108- 113.
3 ZHILYAEV A P , LANGDON T G . Using high-pressure torsion for metal processing: fundamentals and applications[J]. Progress in Materials Science, 2008, 53 (6): 893- 979.
doi: 10.1016/j.pmatsci.2008.03.002
4 SABIROV I , KOLEDNIK O , PIPPAN R . Homogenization of metal matrix composites by high-pressure torsion[J]. Metallurgical and Materials Transactions A, 2005, 36 (10): 2861- 2870.
doi: 10.1007/s11661-005-0281-2
5 EDALATI K , HORITA Z . Application of high-pressure torsion for consolidation of ceramic powders[J]. Scripta Materialia, 2010, 63 (2): 174- 177.
doi: 10.1016/j.scriptamat.2010.03.048
6 郭成, 程羽, 尚春阳, 等. SiC颗粒增强铝合金基复合材料断裂与强化机理[J]. 复合材料学报, 2001, 18 (4): 54- 57.
6 GUO C , CHENG Y , SHANG C Y , et al. Mechanisms on fracture and strengthening of aluminium alloy matrix composites reinforced with SiC particles[J]. Acta Materiae Compositae Sinica, 2001, 18 (4): 54- 57.
7 YUAN Z , LI F , XUE F . An investigation of micro-mechanical properties of Al matrix in SiC/Al composite by indentation experiments[J]. Journal of Materials Engineering and Performance, 2015, 24 (2): 654- 663.
doi: 10.1007/s11665-014-1350-8
8 ZHANG Q , XIAO B L , LIU Z Y , et al. Microstructure evolution and elemental diffusion of SiCP/Al-Cu-Mg composites prepared from elemental powder during hot pressing[J]. Journal of Materials Science, 2011, 46 (21): 6783- 6793.
doi: 10.1007/s10853-011-5636-z
9 HUANG J , DONG Y , WAN Y , et al. Investigation on reactive diffusion bonding of SiCP/6063MMC by using mixed powders as inter layers[J]. Journal of Materials Processing Technology, 2007, 190 (1-3): 312- 316.
doi: 10.1016/j.jmatprotec.2007.02.028
10 SUN Y P , HAN J , TU Y , et al. Microstructure and mechanical properties of a spray deposited SiCP/Al composite processed by hot extrusion and equal channel angular pressing[J]. Materials Research Innovations, 2015, 18 (Suppl 4): 220- 223.
11 胡锐, 袁秦鲁, 李金山, 等. 真空热压烧结SiCP/Al复合材料的界面元素扩散及增强断裂机理[J]. 机械科学与技术, 2004, 23 (10): 1198- 1200.
doi: 10.3321/j.issn:1003-8728.2004.10.020
11 HU R , YUAN Q L , LI J S , et al. Dement diffusion on interface and reinforcing and fracture mechanisms of SiCP/Al composites by vacuum hot-pressing sintering processing[J]. Mechanical Science and Technology, 2004, 23 (10): 1198- 1200.
doi: 10.3321/j.issn:1003-8728.2004.10.020
12 LANDOLT B . Numerical data and functional relationships in science and technology[J]. Berichte der Bunsengesellschaft für physikalische Chemie, 1993, 97 (7): 952.
13 王金相, 李晓杰, 李瑞勇, 等. 基于尺寸效应的爆炸粉末烧结颗粒间摩擦升温计算[J]. 工程力学, 2005, (增刊1): 52- 57.
13 WANG J X , LI X J , LI R Y , et al. Calculation of size-based temperature rise at the interface of particles caused by friction in explosive consolidation of powders[J]. Engineering Mechanics, 2005, (Suppl 1): 52- 57.
14 魏志刚, 李凡庆, 李永池, 等. 粉末烧结钨合金材料的绝热剪切变形局域化实验研究[J]. 金属学报, 2009, 35 (8): 829- 833.
14 WEI Z G , LI F Q , LI Y C , et al. Adiabatic shearing localization of tungsten heavy alloy[J]. Acta Metallurgica Sinica, 2009, 35 (8): 829- 833.
15 OH-ISHI K , EDALATI K , KIM H S , et al. High-pressure torsion for enhanced atomic diffusion and promoting solid-state reactions in the aluminum-copper system[J]. Acta Materialia, 2013, 61 (9): 3482- 3489.
doi: 10.1016/j.actamat.2013.02.042
16 KRAFTMAKHER Y . Equilibrium vacancies and thermosphysical properties of metals[J]. Physics Reports, 1998, 299 (2-3): 79- 188.
doi: 10.1016/S0370-1573(97)00082-3
17 郭树启, 韩圭焕, 姚忠凯. SiCw/Al复合材料的微观结构与性能[J]. 金属学报, 1988, 24 (6): 421- 426.
17 GUO S Q , HAN G H , YAO Z K . Microstructures and properties of SiCw/Al composites[J]. Acta Metallurgica Sinica, 1988, 24 (6): 421- 426.
[1] 刘石双, 周毅, 李娟, 曹京霞, 蔡建明, 黄旭, 戴圣龙. Ti-22Al-23Nb-1Mo-1Zr合金环锻件组织演变及力学行为[J]. 材料工程, 2022, 50(4): 147-155.
[2] 苏传出, 陈希章, SergeyKonovalov, 卢淑媛, 闻明, 王艳虎. 激光直接沉积CoCrFeNiMn高熵合金: 气孔-组织结构-拉伸性能之间的关系[J]. 材料工程, 2022, 50(3): 43-49.
[3] 刘维维, 刘世忠, 李影, 李嘉荣. 长期时效对DD6单晶高温合金组织和力学性能的影响[J]. 材料工程, 2021, 49(6): 94-99.
[4] 于娟, 陆政, 鲁原, 熊艳才, 李国爱, 冯朝辉, 郝时嘉. 中间形变热处理对2A97铝锂合金组织和性能的影响[J]. 材料工程, 2021, 49(5): 130-136.
[5] 相宁, 张晓雯, 葛勇, 丁尧, 郑梦瑶, 颜悦. 注射成型热塑性聚氨酯制件的取向形态演变和力学性能[J]. 材料工程, 2021, 49(12): 156-163.
[6] 杨洋, 陈新文, 孙炜, 马丽婷, 王翔, 郭广平. 基于数字图像相关方法的CFRP层合板高温压缩性能实验研究[J]. 材料工程, 2021, 49(11): 62-72.
[7] 石磊, 雷力明, 王威, 付鑫, 张广平. 热等静压/热处理工艺对激光选区熔化成形GH4169合金微观组织与拉伸性能的影响[J]. 材料工程, 2020, 48(6): 148-155.
[8] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[9] 齐业雄, 姜亚明, 李嘉禄. 混杂比对碳/芳纶纤维混杂纬编双轴向多层衬纱织物增强复合材料力学性能的影响[J]. 材料工程, 2020, 48(2): 71-78.
[10] 秦健朝, 崔仁杰, 黄朝晖. 小角度晶界对DD5镍基单晶高温合金中、高温条件下力学性能的影响[J]. 材料工程, 2020, 48(10): 114-122.
[11] 韩梅, 喻健, 李嘉荣, 谢洪吉, 董建民, 杨岩. 喷丸对DD6单晶高温合金拉伸性能的影响[J]. 材料工程, 2019, 47(8): 169-175.
[12] 李雅莉, 雷力明, 侯慧鹏, 何艳丽. 热工艺对激光选区熔化Hastelloy X合金组织及拉伸性能的影响[J]. 材料工程, 2019, 47(5): 100-106.
[13] 王驰, 冉广, 雷鹏辉, 黄金华. SA508 Gr.3 Cl.1钢的疲劳和高温拉伸性能[J]. 材料工程, 2018, 46(5): 151-158.
[14] 屈敏, 刘鑫, 崔岩, 刘峰斌, 焦志伟, 刘园. 稀土元素对原位合成TiB2/Al复合材料组织和性能的影响[J]. 材料工程, 2018, 46(3): 98-104.
[15] 何柏林, 江明明, 于影霞, 李力. 超声冲击处理MB8镁合金十字接头的表层组织及疲劳性能[J]. 材料工程, 2018, 46(10): 70-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn