Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (4): 70-76    DOI: 10.11868/j.issn.1001-4381.2015.001040
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Si含量对VAlSiN涂层微结构、力学性能和摩擦磨损性能的影响
王恩青1,2, 岳建岭1,3, 李淼磊1, 李栋2, 黄峰2
1. 中南大学 航空航天学院, 长沙 410083;
2. 中国科学院 宁波材料技术与工程研究所, 浙江 宁波 315201;
3. 中南大学 粉末冶金国家重点实验室, 长沙 410083
Influence of Si Content on Microstructure, Mechanical Properties and Tribological Properties of VAlSiN Coatings
WANG En-qing1,2, YUE Jian-ling1,3, LI Miao-lei1, LI Dong2, HUANG Feng2
1. School of Aeronautics and Astronautics, Central South University, Changsha 410083, China;
2. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China;
3. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
全文: PDF(3034 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用反应磁控溅射技术,在300℃下制备不同Si含量的VAlSiN涂层。研究Si含量的变化对VAlSiN涂层相结构、生长形貌、化学状态、力学性能和摩擦磨损性能的影响。结果表明:不含Si的VAlN涂层呈现(111)择优取向生长。随着Si含量的增加,VAlSiN涂层的(111)择优取向逐渐消失,最终转变为非晶结构。Si含量大于1.8%(原子分数,下同)的VAlSiN涂层是由nc-VAlN和a-Si3N4组成的多相复合涂层。与VAlN涂层相比,添加少量Si(0.8%)的VAlSiN涂层晶粒尺寸减小,致密度得到提高,对应的涂层硬度也得到显著增大,达到30.1GPa。继续增加Si的含量,VAlSiN涂层的柱状生长结构被打断,硬度逐渐下降,最后稳定在22GPa左右。VAlSiN涂层的摩擦因数随着Si含量的增加先降低后升高。当Si含量为0.8%时涂层的磨损率最低,达1.2×10-16 m3·N-1·m-1
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王恩青
岳建岭
李淼磊
李栋
黄峰
关键词 磁控溅射VAlSiN涂层微结构硬度摩擦磨损性能    
Abstract:VAlSiN coatings with different Si contents were deposited at 300℃ by reactive magnetron sputtering. The effect of Si content on the microstructure, growth morphology,chemical state, mechanical properties,friction and wear properties was investigated. The results show that the VAlN coating exhibits a single-phase NaCl structure with (111) preferred orientation. The VAlSiN coatings gradually lose their structure of (111) preferred orientation and transfer into amorphous structure with the increase of Si content. The VAlSiN coatings which Si content is more than 1.8% (atom fraction,same as below) are multi-phase composite coatings consisting of nc-VAlN and a-Si3N4. Compared to VAlN coating, the density of VAlSiN coatings with small amount of Si (0.8%) is increased significantly as well as the hardness that reaches 30.1GPa,while the grain size is decreased. Further increasing Si content, the growth of columnar grains is interrupted, concomitant of the hardness gradually declines and tends to be stable at 22GPa. The friction coefficient of the VAlSiN coatings decreases first and then increases with the increase of Si content. The wear rate reaches the lowest value of 1.2×10-16 m3·N-1·m-1 is obtained when Si content is 0.8%.
Key wordsmagnetron sputtering    VAlSiN coating    microstructure    hardness    tribological property
收稿日期: 2015-08-20      出版日期: 2017-04-17
中图分类号:  TG174.444  
通讯作者: 岳建岭(1979-),男,副教授,主要从事纳米结构硬质涂层材料研究,联系地址:湖南省长沙市岳麓区麓山南路932号中南大学航空航天学院(410083),E-mail:jlyue2010@csu.edu.cn     E-mail: jlyue2010@csu.edu.cn
引用本文:   
王恩青, 岳建岭, 李淼磊, 李栋, 黄峰. Si含量对VAlSiN涂层微结构、力学性能和摩擦磨损性能的影响[J]. 材料工程, 2017, 45(4): 70-76.
WANG En-qing, YUE Jian-ling, LI Miao-lei, LI Dong, HUANG Feng. Influence of Si Content on Microstructure, Mechanical Properties and Tribological Properties of VAlSiN Coatings. Journal of Materials Engineering, 2017, 45(4): 70-76.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001040      或      http://jme.biam.ac.cn/CN/Y2017/V45/I4/70
[1] SUNDGREN J E, HENTZELL H T G. A review of the present state of art in hard coatings grown from the vapor phase[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1986, 4(5): 2259-2279.
[2] MAYRHOFER P H, MITTERER C, HULTMAN L, et al. Microstructural design of hard coatings[J]. Progress in Materials Science, 2006, 51: 1032-1114.
[3] OLIVEIRA J C, MANAIA A, CAVALEIRO A, et al. Structure, hardness and thermal stability of Ti(Al,N) coatings[J]. Surface & Coatings Technology, 2006, 201(7): 4073-4077.
[4] MAYRHOFER P H, HORLING A, KARLSSON L, et al. Self-organized nanostructures in the Ti-Al-N system[J]. Applied Physics Letters, 2003, 83(10): 2049-2051.
[5] CHENG Y H, BROWNE T, HECKERMAN B, et al. Mechanical and tribological properties of nanocomposite TiSiN coatings[J]. Surface & Coatings Technology,2010,204(14):2123-2129.
[6] MA S, PROCHAZKA J, KARVANKOVA P, et al. Comparative study of the tribological behaviour of superhard nanocomposite coatings nc-TiN/a-Si3N4 with TiN[J]. Surface and Coatings Technology, 2005, 194(1): 143-148.
[7] 邓建新, 钮平章, 王景海, 等. "软"涂层刀具的发展与应用[J]. 工具技术, 2005, 39(3): 10-12. DENG J X, NIU P Z, WANG J H, et al. Development and application of soft coating tool [J]. Tool Engineering, 2005, 39(3): 10-12.
[8] GASSNER G, MAYRHOFER P H, KUTSCHEJ K, et al. A new low friction concept for high temperatures: lubricious oxide formation on sputtered VN coatings[J]. Tribology Letters, 2004, 17(4): 751-756.
[9] FATEH N, FONTALVO G A, GASSNER G, et al. Influence of high-temperature oxide formation on the tribological behaviour of TiN and VN coatings[J]. Wear, 2007, 262(9-10): 1152-1158.
[10] KUTSCHEJ K, MAYRHOFER P H, KATHREIN M, et al. A new low-friction concept for Ti1-xAlxN based coatings in high-temperature applications[J]. Surface & Coatings Technology, 2004, 188-189: 358-363.
[11] FRANZ R, NEIDHARDT J, SARTORY B, et al. High-temperature low-friction properties of vanadium-alloyed AlCrN coatings[J]. Tribology Letters, 2006, 23(2): 101-107.
[12] GE F, ZHU P, MENG F, et al. Achieving very low wear rates in binary transition-metal nitrides: the case of magnetron sputtered dense and highly oriented VN coatings[J]. Surface & Coatings Technology, 2014, 248: 81-90.
[13] GE F, ZHU P, WANG H, et al. Friction and wear behavior of magnetron co-sputtered V-Si-N coatings[J]. Wear, 2014, 315(1-2): 17-24.
[14] ZHU P, GE F, LI S, et al. Microstructure, chemical states, and mechanical properties of magnetron co-sputtered V1-xAlxN coatings[J]. Surface & Coatings Technology, 2013, 232: 311-318.
[15] ROVERE F, MUSIC D, ERSHOV S, et al. Experimental and computational study on the phase stability of Al-containing cubic transition metal nitrides[J]. Journal of Physics D: Applied Physics, 2010, 43(3): 035302.
[16] PARK I W, CHOI S R, SUH J H, et al. Deposition and mechanical evaluation of superhard Ti-Al-Si-N nanocomposite films by a hybrid coating system[J]. Thin Solid Films, 2004, 447-448: 443-448.
[17] FLINK A, LARSSON T, SJOLEN J, et al. Influence of Si on the microstructure of arc evaporated (Ti,Si)N thin films; evidence for cubic solid solutions and their thermal stability[J]. Surface & Coatings Technology, 2005, 200: 1535-1542.
[18] LI Z G, MORI M, MIYAKE S, et al. Structure and properties of Ti-Si-N films prepared by ICP assisted magnetron sputtering[J]. Surface & Coatings Technology, 2005, 193(1-3): 345-349.
[19] SANDU C S, SANJIN S R, BENKAHOUL M, et al. Formation of composite ternary nitride thin films by magnetron sputtering co-deposition[J]. Surface & Coatings Technology, 2006, 201(7): 4083-4089.
[20] SANDU C S, SANJIN S R,MEDJANI F. Control of morphology (ZrN crystallite size and SiNx layer thickness) in Zr-Si-N nanocomposite thin films[J]. Surface & Coatings Technology, 2008, 202(11): 2278-2281.
[21] HUANG F, GE F, ZHU P, et al. Superhard V-Si-N coatings (>50GPa) with the cell-like nanostructure prepared by magnetron sputtering[J]. Surface & Coatings Technology, 2013, 232: 600-605.
[22] GREENE J E, SUNDGREN J-E, HULTMAN L, et al. Development of preferred orientation in polycrystalline TiN layers grown by ultrahigh vacuum reactive magnetron sputtering[J]. Applied Physics Letters, 1995, 67(20): 2928-2930.
[23] PROCHAZKA J, KARVANKOVA P, VEP ?EK-HEIJMAN M G J, et al. Conditions required for achieving superhardness of ≥ 45GPa in nc-TiN/a-Si3N4 nanocomposites[J]. Materials Science and Engineering: A, 2004, 384(1-2): 102-116.
[24] YAU B-S, HUANG J-L, LⅡ D-F, et al. Investigation of nanocrystal-(Ti,Al)Nx/amorphous-SiN<i>y composite films by co-deposition process[J]. Surface & Coatings Technology, 2004, 177-178: 209-214.
[25] KIM G S, KIM B S, LEE S Y, et al. Effect of Si content on the properties of Ti-Al-Si-N films deposited by closed field unbalanced magnetron sputtering with vertical magnetron sources[J]. Thin Solid Films, 2006, 506-507: 128-132.
[26] VEPREK S,REIPRICH S. A concept for the design of novel superhard coatings[J]. Thin Solid Films, 1995, 268: 64-71.
[27] 李戈杨. 评Veprek的nc-TiN/a-Si3N4模型和其"超过金刚石硬度"的实验基础[J]. 无机材料学报, 2015, 30(1): 1-8. LI G Y. Comment on experiment fundament of Veprek’s nc-TiN/a-Si3N4 model and its "exceed diamond hardness"[J]. Journal of Inorganic Materials, 2015, 30(1): 1-8.
[28] 孔明, 赵文济, 乌晓燕, 等. TiN/Si3N4纳米晶复合膜的微结构和强化机制[J]. 无机材料学报, 2007, 22(3): 539-544. KONG M, ZHAO W J, WU X Y, et al. Microstructure and mechanical properties of TiN/Si3N4 nanocomposite films[J]. Journal of Inorganic Materials, 2007, 22(3): 539-544.
[29] FLINK A, BECKERS M, SJOLEN J, et al. The location and effects of Si in (Ti1-xSix)N<i>y thin films[J]. Journal of Materials Research, 2009, 24(8): 2483-2498.
[30] HAINES J, LEGER J, BOCQUILLON G. Synthesis and design of superhard materials[J]. Annual Review of Materials Research, 2001, 31: 1-23.
[31] FLINK A, ANDERSSON J M, ALLING B, et al. Structure and thermal stability of arc evaporated (Ti0.33Al0.67)1-xSixN thin films[J]. Thin Solid Films, 2008, 517(2): 714-721.
[32] ZHANG K, WANG L S, YUE G H, et al. Structure and mechanical properties of TiAlSiN/Si3N4 multilayer coatings[J]. Surface & Coatings Technology, 2011, 205(12): 3588-3595.
[33] FUENTES G G, ALMANDOZ E, PIERRUGUES R, et al. High temperature tribological characterisation of TiAlSiN coatings produced by cathodic arc evaporation[J]. Surface and Coatings Technology, 2010, 205(5): 1368-1373.
[1] 陈林, 陈文静, 黄强, 熊中. 超声振动对EA4T钢激光熔覆质量和性能的影响[J]. 材料工程, 2019, 47(5): 79-85.
[2] 钟蛟, 彭志方, 陈方玉, 彭芳芳, 刘省, 石振斌. P92钢奥氏体化后的冷却方式对650℃时效组织及硬度稳定性的影响[J]. 材料工程, 2019, 47(1): 119-124.
[3] 江泽琦, 冯彦寒, 方建华, 刘坪, 陈波水, 谷科城, 吴江. 含硫代磷酸铵盐润滑油在电磁场作用下的摩擦学性能[J]. 材料工程, 2018, 46(9): 95-100.
[4] 郑欢欢, 刘鑫禹, 陈亚楠, 张从林, 吕鹏, 蔡杰, 关庆丰. 20钢强流脉冲电子束表面合金化的微观组织和性能[J]. 材料工程, 2018, 46(7): 127-135.
[5] 杨伟华, 吴玉萍, 洪晟, 李佳荟, 李柏涛. 超音速火焰喷涂WC-10Co-4Cr涂层的微观组织与摩擦磨损性能[J]. 材料工程, 2018, 46(5): 120-125.
[6] 邓德伟, 牛婷婷, 田鑫, 刘海英, 孙奇, 张林. 水导轴承等离子堆焊Ni60合金组织及其耐腐蚀性能[J]. 材料工程, 2018, 46(5): 106-111.
[7] 龚玉兵, 王善林, 李宏祥, 柯黎明, 陈玉华, 马彬. 脉冲宽度对激光熔覆FeSiB涂层组织与硬度的影响[J]. 材料工程, 2018, 46(3): 74-80.
[8] 吕奕菊, 谭家栩, 蒋世权, 文衍宣, 张淑芬. 喷雾干燥条件对合成纳/微结构LiFePO4/C形貌及性能的影响[J]. 材料工程, 2018, 46(12): 85-94.
[9] 丁小龙, 胡振峰, 金国, 吕镖, 汪笑鹤. 电刷镀Ni-石墨烯复合镀层的组织结构及性能[J]. 材料工程, 2018, 46(11): 110-117.
[10] 王跃明, 唐求豪, 闫志巧, 王芬. 真空室压力对低压等离子喷涂成形钨靶材显微组织及性能的影响[J]. 材料工程, 2018, 46(10): 104-112.
[11] 杜际雨, 李方义, 鹿海洋, 商建通, 李振. 大气等离子喷涂NiCrBSi-Mo/Ni涂层中黏结层对NiCrBSi-Mo复合工作层性能的影响[J]. 材料工程, 2017, 45(9): 86-92.
[12] 方旭东, 王岩, 范光伟, 夏焱, 王志斌, 韩培德. 超超临界锅炉材料TP310HCbN(HR3C)持久及析出行为[J]. 材料工程, 2017, 45(6): 112-117.
[13] 韩素琦, 刘胜胆, 李承波, 雷越, 邓运来, 张新明. 淬火速率对Al-Zn-Mg-Cu-Cr合金挤压棒材组织及硬度的影响[J]. 材料工程, 2017, 45(4): 9-14.
[14] 赵龙志, 刘武, 刘德佳, 赵明娟, 张坚. SiC含量对激光熔覆SiC/Ni60A复合涂层显微组织和耐磨性能的影响[J]. 材料工程, 2017, 45(3): 88-94.
[15] 乔及森, 向阳芷, 聂书才, 张涵. 铝镁异种金属复合挤压成形及界面微观组织[J]. 材料工程, 2017, 45(11): 78-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn