Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (9): 81-85    DOI: 10.11868/j.issn.1001-4381.2015.001062
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
热分解法制备Ni0.5Zn0.5Fe2O4纳米颗粒
赵海涛(), 马瑞廷, 刘瑞萍
沈阳理工大学 材料科学与工程学院, 沈阳 110159
Synthesis of Ni0.5Zn0.5Fe2O4 Nanoparticles by Thermal Decomposition Method
Hai-tao ZHAO(), Rui-ting MA, Rui-ping LIU
School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
全文: PDF(3141 KB)   HTML ( 11 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用热分解法制备Ni0.5Zn0.5Fe2O4纳米颗粒,研究表面活性剂用量、回流温度和回流时间对产物尺寸、形貌以及分散性的影响。通过X射线衍射仪(XRD)、透射电子显微镜(TEM)和振动样品磁强计(VSM)对样品的结构、形貌与磁性能进行了表征。结果表明:增加表面活性剂的用量,产物的粒径减小,分散性明显提高,而提高回流温度和延长回流时间则会使产物粒径增加,但粒径分布也会变宽。在三辛基氧化膦(TOPO)用量为0.6mmol,260℃回流1h条件下制备产物的饱和磁化强度为49.38A·m2/kg,矫顽力为7143.20A/m,剩余磁化强度为5.76A·m2/kg,表现为亚铁磁性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵海涛
马瑞廷
刘瑞萍
关键词 热分解法Ni-Zn铁氧体分散性磁性能    
Abstract

Ni0.5Zn0.5Fe2O4 nanoparticles were synthesized by thermal decomposition method. The influence of reaction conditions such as the amount of the surfactant, refluxing temperature and time on the size, morphology and dispersibility was investigated. The structure, morphology and magnetic properties of the samples were characterized by X-ray diffraction(XRD), transmission electron microscopy(TEM) and vibrating sample magnetometry(VSM). The results indicate that increasing the amount of the surfactant is beneficial to obtain samples with smaller particle size and better dispersibility, and the improving refluxing temperature and extending refluxing time is beneficial to obtain samples with larger particle size, but with wider size distribution. The saturation magnetization of the sample is determined to be 49.38A·m2/kg, coercivity is 7143.20A/m and remanent magnetization is 5.76A·m2/kg with ferrimagnetic behavior at room temperature when the reaction condition is determined as follows, the amount of TOPO is 0.6mmol, the refluxing temperature is 260℃ and the refluxing time is 1h.

Key wordsthermal decomposition method    Ni-Zn ferrite    dispersibility    magnetic property
收稿日期: 2015-08-28      出版日期: 2017-09-16
中图分类号:  TB332  
  TM25  
基金资助:国家自然科学基金项目(51303108);沈阳市科技计划项目(17-106-6-00)
通讯作者: 赵海涛     E-mail: zht95711@163.com
作者简介: 赵海涛(1976-), 女, 博士, 教授, 现从事功能材料研究, 联系地址:辽宁省沈阳市浑南新区南屏中路6号沈阳理工大学材料科学与工程学院(110159), E-mail:zht95711@163.com
引用本文:   
赵海涛, 马瑞廷, 刘瑞萍. 热分解法制备Ni0.5Zn0.5Fe2O4纳米颗粒[J]. 材料工程, 2017, 45(9): 81-85.
Hai-tao ZHAO, Rui-ting MA, Rui-ping LIU. Synthesis of Ni0.5Zn0.5Fe2O4 Nanoparticles by Thermal Decomposition Method. Journal of Materials Engineering, 2017, 45(9): 81-85.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001062      或      http://jme.biam.ac.cn/CN/Y2017/V45/I9/81
Fig.1  Ni0.5Zn05.Fe2O4纳米粒子的XRD图谱
Fig.2  不同TOPO用量制备的Ni0.5Zn0.5Fe2O4纳米粒子的透射电镜照片
(a)0.2mmol; (b)0.4mmol; (c)0.6mmol
Fig.3  不同回流温度下制备的Ni0.5Zn0.5Fe2O4纳米粒子的透射电镜照片
(a)240℃; (b)260℃; (c)280℃
Fig.4  不同回流时间下制备的Ni0.5Zn0.5Fe2O4纳米粒子的透射电镜照片
(a)1h;(b)1.5h;(c)2h
Fig.5  Ni0.5Zn0.5Fe2O4纳米粒子室温(300K)磁滞回线
1 WANG L S , NIE S J , WANG J B , et al. Effect of experiment parameters on the structure and magnetic properties of NiZn-ferrite films[J]. Materials Chemistry and Physics, 2015, 160, 321- 328.
doi: 10.1016/j.matchemphys.2015.04.044
2 WANG L , DONG H , LI J , et al. Effects of annealing temperature on structural and magnetic properties of Ni0.8Zn0.2Fe2O4 thin films[J]. Ceramics International, 2014, 40 (7): 10323- 10327.
doi: 10.1016/j.ceramint.2014.03.004
3 GUTIERREZ-LPEZA J , LEVENFELDA B , VAREZA A , et al. Study of the densification, mechanical and magnetic properties of Ni-Zn ferrites sintered in a solar furnace[J]. Ceramics International, 2015, 41 (5): 6534- 6541.
doi: 10.1016/j.ceramint.2015.01.096
4 赵海涛, 张强, 刘瑞萍, 等. 单分散纳米锌铁氧体的制备及其磁性能[J]. 材料工程, 2016, 44 (1): 103- 107.
doi: 10.11868/j.issn.1001-4381.2016.01.016
4 ZHAO H T , ZHANG Q , LIU R P , et al. Synthesis and magnetic properties of monodisperse ZnFe2O4 nanoparticles[J]. Journal of Materials Engineering, 2016, 44 (1): 103- 107.
doi: 10.11868/j.issn.1001-4381.2016.01.016
5 IBRAHIM I R , HASHIM M , NAZLAN R , et al. Grouping trends of magnetic permeability components in their parallel evolution with microstructure in Ni0.3Zn0.7Fe2O4[J]. Journal of Magnetism and Magnetic Materials, 2014, 355, 265- 275.
doi: 10.1016/j.jmmm.2013.12.024
6 RASHAD M M , RAYAN D A , TURKY A O , et al. Effect of Co2+ and Y3+ ions insertion on the microstructure development and magnetic properties of Ni0.5Zn0.5Fe2O4 powders synthesized using Co-precipitation method[J]. Journal of Magnetism and Magnetic Materials, 2015, 374, 359- 366.
doi: 10.1016/j.jmmm.2014.08.031
7 曹慧群, 魏波, 刘剑洪, 等. 水热法制备纳米镍锌铁氧体粉体及其磁性能[J]. 硅酸盐学报, 2007, 35 (6): 713- 716.
7 CAO H Q , WEI B , LIU J H , et al. Hydrothermal synthesis and magnetic properties of nanosized nickel zinc ferrite powder[J]. Journal of the Chinese Ceramic Society, 2007, 35 (6): 713- 716.
8 张永刚, 徐波, 王树林, 等. 镍锌铁氧体纳米材料制备及其光催化性能研究[J]. 功能材料, 2013, 44 (14): 2010- 2013.
doi: 10.3969/j.issn.1001-9731.2013.14.008
8 ZHANG Y G , XU B , WANG S L , et al. Preparation and photocatalytic properties of Ni-Zn ferrite nanopower[J]. Journal of Functional Materials, 2013, 44 (14): 2010- 2013.
doi: 10.3969/j.issn.1001-9731.2013.14.008
9 张宁, 吴华强, 冒丽, 等. 微波多元醇法制备单分散Ni1-xZnxFe2O4/MWCNTs与磁性能[J]. 功能材料, 2012, 43 (18): 2554- 2557.
doi: 10.3969/j.issn.1001-9731.2012.18.029
9 ZHANG N , WU H Q , MAO L , et al. Microwave-assisted polyol synthesis and magnetic properties of monodisperse Ni1-xZnxFe2O4/MWCNTs nanocomposites[J]. Journal of Functional Materials, 2012, 43 (18): 2554- 2557.
doi: 10.3969/j.issn.1001-9731.2012.18.029
10 ZHU Y , JIANG F Y , CHEN K X , et al. Size-controlled synthesis of monodisperse superparamagnetic iron oxide nanoparticles[J]. Journal of Alloys and Compounds, 2011, 509 (34): 8549- 8553.
doi: 10.1016/j.jallcom.2011.05.115
11 SONG M J , ZHANG Y , HU S L , et al. Influence of morphology and surface exchange reaction on magnetic properties of monodisperse magnetite nanoparticles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2012, 408, 114- 121.
12 ZHANG L , HE R , GU H C . Oleic acid coating on the monodisperse magnetite nanoparticles[J]. Applied Surface Science, 2006, 253 (5): 2611- 2617.
doi: 10.1016/j.apsusc.2006.05.023
13 LI D , JIANG D L , CHEN M , et al. An easy fabrication of monodisperse oleic acid-coated Fe3O4 nanoparticles[J]. Materials Letters, 2010, 64 (22): 2462- 2464.
doi: 10.1016/j.matlet.2010.08.025
14 李浩, 张喜斌. 络合剂/表面活性剂对溶剂热法制备钴纳米花的影响[J]. 无机盐工业, 2010, 42 (6): 30- 32.
14 LI H , ZHANG X B . Effect of complexing agents/surfactants on flowery Co microcrystals prepared by solvothermal method[J]. Inorganic Chemicals Industry, 2010, 42 (6): 30- 32.
15 陈瑾. 高温多元醇法制备超顺磁CoFe2O4纳米颗粒磁共振造影剂[J]. 无机材料学报, 2009, 24 (5): 967- 972.
15 CHEN J . High temperature polyol synthesis of superparamagnetic CoFe2O4 nanoparticles for magnetic resonance imaging contrast agents[J]. Journal of Inorganic Materials, 2009, 24 (5): 967- 972.
16 ABBAS M , PARVATHEESWARA RAO B , KIM C G . Shape and size-controlled synthesis of Ni-Zn ferrite nanoparticles by two different routes[J]. Materials Chemistry and Physics, 2014, 147 (3): 443- 451.
doi: 10.1016/j.matchemphys.2014.05.013
17 HAJALILOUA A , HASHIM M , EBRAHIMI-KAHRIZSANGI R , et al. Synthesis and structural characterization of nano-sized nickel ferrite obtained by mechanochemical process[J]. Ceramics International, 2014, 40 (4): 5881- 5887.
doi: 10.1016/j.ceramint.2013.11.032
18 GHASEMIN A , MOUSAVINIA M . Structural and magnetic evaluation of substituted NiZnFe2O4 particles synthesized by conventional sol-gel method[J]. Ceramics International, 2014, 40 (2): 2825- 2834.
doi: 10.1016/j.ceramint.2013.10.031
19 LAZAREVIĆ Z Ž , MILUTINOVIĆ A N , JOVALEKIĆČ D , et al. Spectroscopy investigation of nanostructured nickel-zinc ferrite obtained by mechanochemical synthesis[J]. Materials Research Bulletin, 2015, 63, 239- 247.
doi: 10.1016/j.materresbull.2014.12.005
20 WU H Q , ZHANG N , MAO L , et al. Controlled synthesis and magnetic properties of monodisperse Ni1-xZnxFe2O4/MWCNT nanocomposites via microwave-assisted polyol process[J]. Journal of Alloys and Compounds, 2013, 554, 132- 137.
doi: 10.1016/j.jallcom.2012.11.185
[1] 胡洁, 董中奇, 沈英明, 王杨, 杨俊雅. Mo元素对LaFe11.5Si1.5磁制冷材料耐腐蚀性能及磁性能的影响[J]. 材料工程, 2020, 48(8): 119-125.
[2] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[3] 郭鸿霞, 张家萌, 王青敏, 毕科. 铁磁/铁电复合介质及其超材料结构微波性能[J]. 材料工程, 2020, 48(6): 43-49.
[4] 涂蕴超, 何承绪, 孟利, 陈冷. 退火工艺参数及母材性能对取向硅钢超薄带磁性能的影响[J]. 材料工程, 2020, 48(1): 61-69.
[5] 徐斌, 陈程华, 张彩霞, 鲁聪达, 倪忠进. 热分解法制备Cu空心微球及其光热转换性能[J]. 材料工程, 2019, 47(7): 57-63.
[6] 梁家浩, 魏智强, 朱学良, 张旭东, 武晓娟, 姜金龙. 尖晶石结构Ni掺杂ZnFe2O4纳米颗粒的性能表征[J]. 材料工程, 2019, 47(10): 113-119.
[7] 王莹, 李勇, 朱靖, 赵亚茹, 李焕. 氧化石墨烯表面稀土改性机理[J]. 材料工程, 2018, 46(5): 29-35.
[8] 赵晖, 马瑞廷, 赵海涛. 合成条件对纳米锌铁氧体形貌与性能的影响[J]. 材料工程, 2018, 46(4): 38-42.
[9] 王晨, 王魁, 肖小波, 丁浩, 汪炳叔, 毛朝武, 张维林, 金钢南. 钨酸钠对取向硅钢绝缘涂层性能的影响[J]. 材料工程, 2018, 46(4): 51-57.
[10] 李悦, 朱立群, 李卫平, 刘慧丛, 南海洋. 钕铁硼器件表面电沉积铜层及性能[J]. 材料工程, 2017, 45(6): 55-60.
[11] 梁瑞洋, 杨平, 毛卫民. 冷轧压下率及初始高斯晶粒取向度对超薄取向硅钢织构演变与磁性能的影响[J]. 材料工程, 2017, 45(6): 87-96.
[12] 谢春晓, 钟守炎, 杨元政, 罗剑英, 廖梓龙. 热处理对(Fe0.52Co0.30Ni0.18)73Cr17Zr10非晶合金的组织结构及磁性能的影响[J]. 材料工程, 2016, 44(8): 46-50.
[13] 钟喜春, 胡庚, 郭兴家, 刘仲武. 流动温压成型黏结钕铁硼/锶铁氧体复合磁体的研究[J]. 材料工程, 2016, 44(4): 9-13.
[14] 芦刚, 毛蒲, 严青松, 吴昊, 纪超众. 超声振荡和羟丙基甲基纤维素对短切纤维在精铸硅溶胶浆料中分散性能的影响[J]. 材料工程, 2016, 44(1): 71-76.
[15] 何天兵, 胡仁伟, 何晓磊, 李沛勇. 碳纳米管增强金属基复合材料的研究进展[J]. 材料工程, 2015, 43(10): 91-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn