Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (11): 90-95    DOI: 10.11868/j.issn.1001-4381.2015.001071
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
2024-T4铝合金光纤激光填丝焊缝成形与组织性能的相关性
许飞(), 陈俐, 何恩光, 郭路云
北京航空制造工程研究所 高能束流加工技术重点实验室, 北京 100024
Correlation of Weld Appearance with Microstructure and Mechanical Properties of 2024-T4 Aluminum Alloy Welded by Fiber Laser with Filler Wire
Fei XU(), Li CHEN, En-guang HE, Lu-yun GUO
Key Laboratory of High Energy Beam Processing Technology, Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024, China
全文: PDF(3442 KB)   HTML ( 27 )  
输出: BibTeX | EndNote (RIS)      
摘要 

2024-T4铝合金光纤激光填丝焊缝横截面分为钉头形和近X形2种典型形貌,对比分析了该2种形貌的焊缝成形与组织形态、显微硬度和接头拉伸性能的相关性。结果表明:近X形横截面的焊缝在焊接过程中更加平稳,焊接飞溅更少。焊缝区的组织特征为垂直于熔合线相对生长的柱状晶组织和焊缝中心的等轴晶组织。钉头形焊缝中心晶粒的二次枝晶较发达,逐渐形成等轴树枝晶,而近X形焊缝中心晶粒相对细小,呈现为等轴胞状晶。与钉头形横截面的接头相比,近X形横截面的接头焊缝区析出的强化相θ(Al2Cu)相对较多,平均显微硬度值略高,热影响区的软化现象逐渐减弱,接头强度和塑性略低。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许飞
陈俐
何恩光
郭路云
关键词 2024-T4铝合金光纤激光填丝焊焊缝横截面显微组织拉伸性能    
Abstract

Two typical cross-section of welds, including nail shape and near X shape, are obtained in the process of fiber laser welding 2024-T4 Al alloy with filler wire. The correlations of the two weld appearances and other elements (such as microstructure, microhardness, and joint's tensile properties) were analyzed. The results show that the weld with near X shape cross-section during the welding process is more stable than that with nail shape cross-section, and the welding spatter of the former is smaller than that of the latter. The microstructure of the weld zone is columnar grains and equiaxed grains, the columnar grains are formed near the fusion line and growing along the vertical direction of the fusion line, the equiaxed grains are distributed in the center of the weld zone. The secondary dendrite of the grains in the center of the weld with nail shape cross-section grows better, and gradually forms to equiaxed dendrite, while the grains size of the weld with near X shape cross-section is relatively finer, exhibiting equiaxed cellular grain. Compared with the joint with nail shape cross-section of the weld, the joint with near X shape cross-section of the weld have some different characteristics, the precipitation strengthening phase θ(Al2Cu) content in weld zone of the latter is more than that of the former, the average microhardness value of the weld zone of the latter is higher than that of the former, the softening phenomenon of heat affect zone (HAZ) of the latter is weaker than that of the former, and the joint's tensile strength and plasticity of the latter are lower than that of the former slightly.

Key words2024-T4 Al alloy    fiber laser    welding with filler wire    cross-section of weld    microstructure    tensile property
收稿日期: 2015-08-31      出版日期: 2017-11-18
中图分类号:  TG456.7  
通讯作者: 许飞     E-mail: xufei_0623@163.com
作者简介: 许飞(1982-), 男, 高级工程师, 硕士, 主要从事轻质合金激光焊接方面的研究工作, 联系地址:北京朝阳区八里桥北东军庄1号北京航空制造工程研究所104室(100024), E-mail:xufei_0623@163.com
引用本文:   
许飞, 陈俐, 何恩光, 郭路云. 2024-T4铝合金光纤激光填丝焊缝成形与组织性能的相关性[J]. 材料工程, 2017, 45(11): 90-95.
Fei XU, Li CHEN, En-guang HE, Lu-yun GUO. Correlation of Weld Appearance with Microstructure and Mechanical Properties of 2024-T4 Aluminum Alloy Welded by Fiber Laser with Filler Wire. Journal of Materials Engineering, 2017, 45(11): 90-95.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001071      或      http://jme.biam.ac.cn/CN/Y2017/V45/I11/90
Material Cu Si Fe Mn Zn Mg Ti Al
2024-T4 3.8-3.9 0.50 0.5 0.3-0.9 0.25 1.2-1.8 0.15 Bal
ER4043 ≤0.3 4.5-6.0 ≤0.8 ≤0.05 ≤0.1 ≤0.05 ≤0.2 Bal
Table 1  铝合金母材和焊丝的化学成分(质量分数%)
Fig.1  钉头形(a)和近X形(b)焊缝的横截面形貌
Cross-sectionof welded joint Weldingspeed/
(m·min-1)
Laserpower/
kW
Wire feedspeed/
(m·min-1)
Heat input/
(J·mm-1)
Nail shape 1.5 3 2.6 120
Near X shape 3.0 5 5.2 100
Table 2  2024-T4铝合金光纤激光填丝焊接参数
Fig.2  钉头形(a)和近X形(b)焊缝宏观形貌
Fig.3  光纤激光填丝焊接钉头形焊缝(a), (b), (c)和近X形焊缝(d), (e), (f)组织(a), (d)焊缝正面近表层; (b), (e)接头横截面熔合区; (c), (f)横截面焊缝中心
Fig.4  2024-T4铝合金焊缝区X射线衍射分析图谱
Fig.5  焊接接头横向显微硬度分布
Cross-section ofwelded joint Ultimate tensilestrength/MPa Yield strength/MPa Elongation afterfracture/% Fracture position(three tensile samples)
Nail shape 362.01 248.87 2.33 Weld zone
Near X shape 347.58 242.37 1.55 Weld zone
Base metal 418.00 268.00 15.00 -
Table 3  2024-T4铝合金光纤激光填丝焊接接头的拉伸性能
Fig.6  拉伸断口宏观(a)和微观(b)形貌
1 SUN Z , KUO M . Bridging the joint gap with wire feed laser welding[J]. Journal of Materials Processing Technology, 1999, 87 (1/3): 213- 222.
2 郑启光, 辜建辉, 王涛, 等. 激光深熔焊接的熔池行为与焊接缺陷的研究[J]. 激光技术, 2000, 24 (2): 90- 94.
2 ZHENG Q G , GU J H , WANG T , et al. Investigation on melting pool behavior and defects of laser welding[J]. Laser Technology, 2000, 24 (2): 90- 94.
3 左铁钏, 肖荣诗, 陈铠, 等. 高强铝合金的激光加工[M]. 北京: 国防工业出版社, 2002.
3 ZUO T C , XIAO R S , CHEN K , et al. Laser materials processing of high strength aluminum alloys[M]. Beijing: National Defence Industry Press, 2002.
4 许飞, 杨璟, 陈俐, 等. 焊接参数对铝合金激光填丝焊缝成形的影响[J]. 材料工程, 2010, (9): 45- 48.
4 XU F , YANG J , CHEN L , et al. Effects of welding parameters on laser welding of aluminum alloys with filler wire[J]. Journal of Materials Engineering, 2010, (9): 45- 48.
5 FABREGUE D , DESCHAMPS A , SUERY M . Microstructure of butt laser joints of aluminium alloy 6056 sheets with an AS12 filler[J]. Materials Science and Technology, 2005, 21 (11): 1329- 1336.
doi: 10.1179/174328405X58896
6 陈俐, 巩水利. 铝合金激光焊接技术的应用与发展[J]. 航空制造技术, 2011, (11): 46- 49.
doi: 10.3969/j.issn.1671-833X.2011.11.006
6 CHEN L , GONG S L . Application and development of laser welding technology for aluminum alloy[J]. Aeronautical Manufacturing Technology, 2011, (11): 46- 49.
doi: 10.3969/j.issn.1671-833X.2011.11.006
7 QUINTINO L , COSTA A , MIRANDA R , et al. Welding with high power fiber lasers-a preliminary study[J]. Materials & Design, 2007, 28 (4): 1231- 1237.
8 姚伟, 巩水利, 陈俐. 钛合金激光穿透焊的焊缝成形(Ⅰ)[J]. 焊接学报, 2004, 25 (4): 119- 122.
8 YAO W , GONG S L , CHEN L . Research on weld shaping for laser fully penetration welding titanium alloy (Ⅰ)[J]. Transactions of the China Welding Institution, 2004, 25 (4): 119- 122.
9 中国航空材料手册编辑委员会. 中国航空材料手册第3卷:铝合金镁合金[M]. 2版 北京: 中国标准出版社, 2002: 149- 150.
10 高向东, 龙观富, 汪润林, 等. 大功率盘形激光焊飞溅特征分析[J]. 物理学报, 2012, 61 (9): 098103.
10 GAO X D , LONG G F , WANG R L , et al. Analysis of characteristics of spatters during high-power disk laser welding[J]. Acta Physica Sinica, 2012, 61 (9): 098103.
11 陈伯蠡. 焊接冶金原理[M]. 北京: 清华大学出版社, 1991.
11 CHEN B L . Principles of welding metallurgy[M]. Beijing: Tsinghua University Press, 1991.
12 许飞, 杨璟, 巩水利, 等. 热输入对铝合金光纤激光穿透焊缝成形的影响[J]. 中国激光, 2014, 41 (12): 1203001.
12 XU F , YANG J , GONG S L , et al. Effect of heat input on weld appearance for fiber laser beam full penetration welding aluminum alloy[J]. Chinese Journal of Lasers, 2014, 41 (12): 1203001.
13 周振丰. 焊接冶金学(金属焊接性)[M]. 北京: 机械工业出版社, 1995.
13 ZHOU Z F . Welding metallurgy (metallic weldability)[M]. Beijing: China Machine Press, 1995.
14 陈康华, 刘允中, 刘红卫. 7075和2024铝合金的固溶组织与力学性能[J]. 中国有色金属学报, 2000, 10 (6): 819- 822.
14 CHEN K H , LIU Y Z , LIU H W . Microstructure and mechanical properties of enhanced solution treated 7075 and 2024 aluminum alloys[J]. The Chinese Journal of Nonferrous Metals, 2000, 10 (6): 819- 822.
15 王祝堂. 2024型铝合金的热处理[J]. 金属世界, 2009, (2): 43- 48.
15 WANG Z T . Heat treatment for 2024 aluminum alloy[J]. Metal World, 2009, (2): 43- 48.
[1] 刘雄飞, 杜文博, 付军健, 王云峰, 李淑波, 朱训明, 王朝辉. Gd对Mg-xGd-1Er-1Zn-0.6Zr合金显微组织和腐蚀行为的影响[J]. 材料工程, 2022, 50(9): 159-168.
[2] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[3] 邓操, 李瑞迪, 袁铁锤, 牛朋达. Al含量对选区激光熔化AlxCoCrFeNi (x=0.3, 0.5, 0.7, 1.0)的显微组织及纳米压痕的影响[J]. 材料工程, 2022, 50(6): 27-35.
[4] 刘石双, 周毅, 李娟, 曹京霞, 蔡建明, 黄旭, 戴圣龙. Ti-22Al-23Nb-1Mo-1Zr合金环锻件组织演变及力学行为[J]. 材料工程, 2022, 50(4): 147-155.
[5] 苏传出, 陈希章, SergeyKonovalov, 卢淑媛, 闻明, 王艳虎. 激光直接沉积CoCrFeNiMn高熵合金: 气孔-组织结构-拉伸性能之间的关系[J]. 材料工程, 2022, 50(3): 43-49.
[6] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
[7] 唐鹏钧, 房立家, 王兴元, 李沛勇, 张学军. 人工时效对激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金显微组织和力学性能的影响[J]. 材料工程, 2022, 50(2): 84-93.
[8] 邢宇轩, 郭英奎, 陈磊, 赵壮志, 王玉金. 气压浸渗法制备ZrC-W-Cu复合材料的显微组织与力学性能[J]. 材料工程, 2021, 49(7): 124-132.
[9] 刘维维, 刘世忠, 李影, 李嘉荣. 长期时效对DD6单晶高温合金组织和力学性能的影响[J]. 材料工程, 2021, 49(6): 94-99.
[10] 杨晓琨, 熊柏青, 李锡武, 闫丽珍, 李志辉, 张永安, 李亚楠, 温凯. Li含量对Al-Mg-Si合金时效析出行为的影响[J]. 材料工程, 2021, 49(6): 100-108.
[11] 于娟, 陆政, 鲁原, 熊艳才, 李国爱, 冯朝辉, 郝时嘉. 中间形变热处理对2A97铝锂合金组织和性能的影响[J]. 材料工程, 2021, 49(5): 130-136.
[12] 覃鑫, 祁文军, 左小刚. TC4钛合金表面激光熔覆NiCrCoAlY-Cr3C2复合涂层的摩擦和高温抗氧化性能[J]. 材料工程, 2021, 49(12): 107-114.
[13] 相宁, 张晓雯, 葛勇, 丁尧, 郑梦瑶, 颜悦. 注射成型热塑性聚氨酯制件的取向形态演变和力学性能[J]. 材料工程, 2021, 49(12): 156-163.
[14] 甘致聪, 王硕, 山圣峰, 张兵, 贾元智, 马明臻. 微量硼对Ti-Fe-Cu-Sn-Nb合金力学性能的影响[J]. 材料工程, 2021, 49(11): 156-162.
[15] 蔡颖军, 王刚, 檀财旺, 王秒, 赵禹. AgCu/泡沫Cu/AgCu复合钎料对ZrB2-SiC/Inconel 600合金钎焊接头组织与性能的影响[J]. 材料工程, 2021, 49(10): 72-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn